Road Network Aware Online Trajectory Compression
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Natural Science Foundation of China (U1636210, 61421003);National Program on Key Basic Research Project (973) (2014CB340300)

  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the rapid development of positioning technologies, positioning sensors are widely used in smart phones, car navigation system and other mobile devices. These positioning systems collect data points at certain sampling rates and produce massive trajectories, which further bring the challenges of storage and transmission of the trajectory data. The trajectory compression technique reduces the waste of the network bandwidth and the storage space by removing the redundant trajectory points and preserving the key trajectory points. This paper summarizes the progresses of trajectory compression researches and proposes a road-network aware and error bounded online trajectory compression system, named ROADER. The system includes a distance-bounded Hidden Markov map matching algorithm and error-bounded efficient trajectory compression algorithm. Experiments based on real data sets show that the system is superior to similar systems in terms of compression ratio, error occurrence and running time.

    Reference
    [1] Giannotti F, Nanni M, Pedreschi D, Pinelli F, Renso C, Rinzivillo S, Trasarti R. Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal-The Int'l Journal on Very Large Data Bases, 2011,20(5):695-719.[doi:10.1007/s00778-011-0244-8]
    [2] Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma WY. Mining user similarity based on location history. In:Proc. of the 16th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. ACM Press, 2008. 34.[doi:10.1145/1463434. 1463477]
    [3] Zheng Y, Li Q, Chen Y, Xie X, Ma WY. Understanding mobility based on GPS data. In:Proc. of the 10th Int'l Conf. on Ubiquitous Computing. ACM Press, 2008. 312-321.[doi:10.1145/1409635.1409677]
    [4] Doytsher Y, Galon B, Kanza Y. Storing routes in socio-spatial networks and supporting social-based route recommendation. In:Proc. of the 3rd ACM SIGSPATIAL Int'l Workshop on Location-Based Social Networks. ACM Press, 2011. 49-56.[doi:10.1145/2063212.2063219]
    [5] Zheng Y, Zhang L, Ma Z, Xie X, Ma WY. Recommending friends and locations based on individual location history. ACM Trans. on the Web (TWEB), 2011,5(1):5.[doi:10.1145/1921591.1921596]
    [6] Zheng Y, Zhang L, Xie X, Ma WY. Mining interesting locations and travel sequences from GPS trajectories. In:Proc. of the 18th Int'l Conf. on World Wide Web. ACM Press, 2009. 791-800.[doi:10.1145/1526709.1526816]
    [7] Gotsman R, Kanza Y. A dilution-matching-encoding compaction of trajectories over road networks. GeoInformatica, 2015,19(2):331-364.[doi:10.1007/s10707-014-0216-4]
    [8] Song R, Sun W, Zheng B, Zheng Y. PRESS:A novel framework of trajectory compression in road networks. Proc. of the VLDB Endowment, 2014,7(9):661-672.[doi:10.14778/2732939.2732940]
    [9] Meratnia N, Rolf A. Spatiotemporal compression techniques for moving point objects. In:Proc. of the Int'l Conf. on Extending Database Technology. Berlin, Heidelberg:Springer-Verlag, 2004. 765-782.[doi:10.1007/978-3-540-24741-8_44]
    [10] Douglas DH, Peucker TK. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica:The Int'l Journal for Geographic Information and Geovisualization, 1973,10(2):112-122.[doi:10.3138/FM57-6770-U75U-7727]
    [11] Lin X, Ma S, Zhang H, Wo T, Huai J. One-Pass error bounded trajectory simplification. Proc. of the VLDB Endowment, 2017, 10(7):841-852.[doi:10.14778/3067421.3067432]
    [12] Liu J, Zhao K, Sommer P, Shang S, Kusy B, Jurdak R. Bounded quadrant system:Error-bounded trajectory compression on the go. In:Proc. of the 2015 IEEE 31st Int'l Conf. on Data Engineering (ICDE). IEEE, 2015. 987-998.[doi:10.1109/ICDE.2015.7113350]
    [13] Muckell J, Olsen PW, Hwang JH, Hwang JH, Lawson CT, Ravi SS. Compression of trajectory data:A comprehensive evaluation and new approach. GeoInformatica, 2014,18(3):435-460.[doi:10.1007/s10707-013-0184-0]
    [14] Shi W, Cheung CK. Performance evaluation of line simplification algorithms for vector generalization. The Cartographic Journal, 2006,43(1):27-44.[doi:10.1179/000870406X93490]
    [15] Reumann K, Witkam APM. Optimizing curve segmentation in computer graphics. In:Proc. of the Int'l Computing Symp. 1974. 467-472.
    [16] Sklansky J, Gonzalez V. Fast polygonal approximation of digitized curves. Pattern Recognition, 1980,12(5):327-331.[doi:10. 1016/0031-3203(80)90031-X]
    [17] Williams CM. An efficient algorithm for the piecewise linear approximation of planar curves. Computer Graphics and Image Processing, 1978,8(2):286-293.[doi:10.1016/0146-664X(78)90055-2]
    [18] Zhao Z, Saalfeld A. Linear-Time sleeve-fitting polyline simplification algorithms. Proc. of the AutoCarto, 1997,13:214-223.
    [19] Han Y, Sun W, Zheng B. COMPRESS:A comprehensive framework of trajectory compression in road networks. ACM Trans. on Database Systems (TODS), 2017,42(2):11.[doi:10.1145/3015457]
    [20] Keogh E, Chu S, Hart D, Pazzani M. An online algorithm for segmenting time series. In:Proc. of the IEEE Int'l Conf. on Data Mining (ICDM 2001). IEEE, 2001. 289-296.[doi:10.1109/ICDM.2001.989531]
    [21] O'Rourke J. An on-line algorithm for fitting straight lines between data ranges. Communications of the ACM, 1981,24(9):574-578.[doi:10.1145/358746.358758]
    [22] Chan WS, Chin F. Approximation of polygonal curves with minimum number of line segments or minimum error. Int'l Journal of Computational Geometry & Applications, 1996,6(1):59-77.[doi:10.1142/S0218195996000058]
    [23] Potamias M, Patroumpas K, Sellis T. Sampling trajectory streams with spatiotemporal criteria. In:Proc. of the 201618th Int'l Conf. on Scientific and Statistical Database Management. IEEE, 2006. 275-284.[doi:10.1109/SSDBM.2006.45]
    [24] Pavlidis T, Horowitz SL. Segmentation of plane curves. IEEE Trans. on Computers, 1974,100(8):860-870.[doi:10.1109/T-C.1974. 224041]
    [25] Diggelen FV. System design & test-gnss accuracy-lies, damn lies, and statistics-This update to a seminal article first published here in 1998 explains how statistical methods can create many different. GPS World, 2007,18(1):26-33.
    [26] Wu JG, Liu M, Wei G, Liu LF. An inproved trajectory data compression algorithm of sliding window. Computer Technology and Development, 2015,35(5):1209-1212(in Chinese with English abstract).[doi:10.3969/j.issn.1673-629X.2015.12.011]
    [27] Gao Q, Zhang FL, Wang RJ, Zhou F. Trajectory big data:A review of key technologies in data processing. Ruan Jian Xue Bao/Journal of Software, 2017,28(4):959-992(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [28] Wang H, Zhang M, Yang R, Lin X, Wo T, Ranjan R, Xu J. SMTP:An optimized storage method for vehicle trajectory data exploiting trajectory patterns. In:Proc. of the 2016 IEEE 18th Int'l Conf. on High Performance Computing and Communications, IEEE 14th Int'l Conf. on Smart City, IEEE 2nd Int'l Conf. on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016. 773-780.[doi:10.1109/HPCC-SmartCity-DSS.2016.0112]
    [29] Zhao XL, Xu WX. Spatio-Temporal trajectory clustering based on interesting location compression. Journal of Beijing Jiaotong University, 2011,35(3):53-57,61(in Chinese with English abstract).[doi:10.3969/j.issn.1673-0291.2011.03.009]
    [30] Hummel B. Map matching for vehicle guidance. In:Proc. of the Dynamic and Mobile GIS:Investigating Space and Time. 2006. 437-438.
    [31] Newson P, Krumm J. Hidden Markov map matching through noise and sparseness. In:Proc. of the 17th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. ACM Press, 2009. 336-343.[doi:10.1145/1653771.1653818]
    [32] Goh CY, Dauwels J, Mitrovic N, Asif MT, Oran A, Jaillet P. Online map-matching based on hidden Markov model for real-time traffic sensing applications. In:Proc. of the 201215th Int'l IEEE Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2012. 776-781.[doi:10.1109/ITSC.2012.6338627]
    [33] Zhou P, Huang W, Jiang J. Validation analysis of OpenStreetMap data in some areas of China. The Int'l Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014,40(4):383.[doi:10.5194/isprsarchives-XL-4-383-2014]
    [34] Girres JF, Touya G. Quality assessment of the French OpenStreetMap dataset. trans. in GIS, 2010,14(4):435-459.[doi:10.1111/j. 1467-9671.2010.01203.x]
    [35] Palpanas T, Vlachos M, Keogh E, et al. Online amnesic approximation of streaming time series. In:Proc. of the 20th Int'l Conf. on Data Engineering. IEEE, 2004. 339-349.[doi:10.1109/ICDE.2004.1320009]
    [36] Lazaridis I, Mehrotra S. Capturing sensor-generated time series with quality guarantees. In:Proc. of the 19th Int'l Conf. on Data Engineering. IEEE, 2003. 429-440.[doi:10.1109/ICDE.2003.1260811]
    附中文参考文献:
    [26] 吴家皋,刘敏,韦光,刘林峰.一种改进的滑动窗口轨迹数据压缩算法.计算机技术与发展,2015,35(5):1209-1212.[doi:10.3969/j. issn.1673-629X.2015.12.011]
    [27] 高强,张凤荔,王瑞锦,周帆.轨迹大数据:数据处理关键技术研究综述.软件学报,2017,28(4):959-992. http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [29] 赵秀丽,徐维祥.基于有趣地点压缩的时空轨迹聚类.北京交通大学学报,2011,35(3):53-57,61.[doi:10.3969/j.issn.1673-0291. 2011.03.009]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

左一萌,林学练,马帅,姜家豪.路网感知的在线轨迹压缩方法.软件学报,2018,29(3):734-755

Copy
Share
Article Metrics
  • Abstract:4376
  • PDF: 8396
  • HTML: 3205
  • Cited by: 0
History
  • Received:July 30,2017
  • Revised:September 05,2017
  • Online: December 05,2017
You are the first2032461Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063