No Reference Screen Content Image Quality Assessment
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61602314, 61602312, 61501299, 61672443); Natural Science Foundation of Guangdong Province of China (2016A030313043, 2016A030310058); Fundamental Research Project in the Science and Technology Plan of Shenzhen (JCYJ2016 0331114551175; JCYJ20150324141711630; JCYJ20130326105637578)

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the rapid development of multi-device interactive applications, the transmission and processing of screen content image (SCI) is growing every day. Image quality assessment, which is the basis of many other research topics, has mainly focused on traditional natural images so far. Image quality assessment specifically for screen content image is therefore becoming very important and urging. Considering that image quality assessment database is the basis of objective image quality assessment metrics, this paper first constructs a large scale Immersive Media Laboratory screen content image quality database (IML-SCIQD). The IML-SCIQD database contain 25 reference images and 1250 distorted images that are distorted by 10 distortions. Based on the IML-SCIQD database, the visual perception difference of pictorial region and textual region is studied. At the same time, inspired by the idea of natural scene statistics (NSS) based no reference (NR) image quality assessment metrics, a NSS based NR content image quality assessment metric (NSNRS) is proposed. The quality scores of textual region and pictorial region are first computed in the NSNRS metric. Then, the quality scores of these two regions are combined to get the quality score of the whole screen content image. For performance comparison, the proposed metric is compared with 12 state-of-the-art objective image quality assessment metrics, including full reference, reduced reference and no reference algorithms, on the IML-SCIQD database and the SIQAD database. Extensive experiments support that the proposed algorithm outperforms the existing representative no reference techniques, and that the new metric has comparable performance with those full reference metrics for the whole database.

    Reference
    [1] Lu Y, Li SP, Shen HF. Virtualized screen:A third element for cloud-mobile convergence. IEEE Multimedia, 2011,18(2):4-11.[doi:10.1109/MMUL.2011.33]
    [2] Shen HF, Lu Y, Wu F, Li SP. A high-performance remote computing platform. In:Proc. of the IEEE Int'l Conf. on Pervasive Computing and Communications. 2009. 1-6.[doi:10.1109/PERCOM.2009.4912855]
    [3] Yang H, Fang YM, Yuan Y, Lin WS. Subjective quality evaluation of compressed digital compound images. Journal of Visual Communication and Image Representation, 2015,26:105-114.[doi:10.1016/j.jvcir.2014.11.001]
    [4] Zhu WJ, Ding WP, Xu JZ, Shi YH, Yin BC. Screen content coding based on HEVC framework. IEEE Trans. on Multimedia, 2014,16(5):1316-1326.[doi:10.1109/TMM.2014.2315782]
    [5] Jiang GY, Huang DJ, Wang X, Yu M. Overview on image quality assessment methods. Journal of Electronics & Information Technology, 2010,32(1):219-226(in Chinese with English abstract). http://jeit.ie.ac.cn/CN/abstract/abstract13977.shtml[doi:10. 3724/SP.J.1146.2009.00091]
    [6] Wang ZM. Review of no-reference image quality assessment. Acta Automatica Sinica, 2015,6:1062-1079(in Chinese with English abstract). http://www.aas.net.cn/CN/abstract/abstract18682.shtml[doi:10.16383/j.aas.2015.c140404]
    [7] Vipin K, Bhurchandi KM. No-Reference image quality assessment algorithms:A survey. Optik-Int'l Journal for Light and Electron Optics, 2015,126(11):1090-1097.[doi:10.1016/j.ijleo.2015.02.093]
    [8] Manap RA, Shao L. Non-Distortion-Specific no-reference image quality assessment:A survey. Information Sciences, 2015,301:141-160.[doi:10.1016/j.ins.2014.12.055]
    [9] Chandler DM, Hemami SS. VSNR:A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. on Image Processing, 2007,16(9):2284-2298.[doi:10.1109/TIP.2007.901820]
    [10] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment:From error visibility to structural similarity. IEEE Trans. on Image Processing, 2004,13(4):600-612.[doi:10.1109/TIP.2003.819861]
    [11] Zhang L, Zhang L, Mou XQ, Zhang D. FSIM:A feature similarity index for image quality assessment. IEEE Trans. on Image Processing, 2011,20(8):2378-2386.[doi:10.1109/TIP.2011.2109730]
    [12] Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans. on Image Processing, 2006,15(2):430-444.[doi:10. 1109/TIP.2005.859378]
    [13] Moorthy AK, Bovik AC. Statistics of natural image distortions. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). 2010. 962-965.[doi:10.1109/ICASSP.2010.5495298]
    [14] Xu L, Lin WS, Jay Kuo C-C. Visual Quality Assessment by Machine Learning. Singapore:Springer-Verlag, 2015. 1-142.[doi:10. 1007/978-981-287-468-9]
    [15] Moorthy AK, Bovik AC. Blind image quality assessment:From natural scene statistics to perceptual quality. IEEE Trans. on Image Processing, 2011,20(12):3350-3364.[doi:10.1109/TIP.2011.2147325]
    [16] Liu LX, Liu B, Huang H, Bovik AC. No-Reference image quality assessment based on spatial and spectral entropies. Signal Processing:Image Communication, 2014,29(8):856-863.[doi:10.1016/j.image.2014.06.006]
    [17] Li CF, Bovik AC, Wu XJ. Blind image quality assessment using a general regression neural network. IEEE Trans. on Neural Networks, 2011,22(5):793-799.[doi:10.1109/TNN.2011.2120620]
    [18] Ye P, Doermann D. No-Reference image quality assessment using visual codebooks. IEEE Trans. on Image Processing, 2012,21(7):3129-3138.[doi:10.1109/TIP.2012.2190086]
    [19] Xue WF, Zhang L, Mou XQ. Learning without human scores for blind image quality assessment. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2013. 995-1002.[doi:10.1109/CVPR.2013.133]
    [20] Yang H, Fang YM, Lin WS. Perceptual quality assessment of screen content images. IEEE Trans. on Image Processing, 2015, 21(11):4408-4421.[doi:10.1109/TIP.2015.2465145]
    [21] Ni ZK, Ma L, Zeng HQ, Cai CH, Ma K-K. Gradient direction for screen content image quality assessment. IEEE Signal Processing Letters, 2016,23(10):1394-1398.[doi:10.1109/LSP.2016.2599294]
    [22] Gu K, Wang SQ, Yang H, Lin WS, Zhai GT, Yang XK, Zhang WJ. Saliency-Guided quality assessment of screen content images. IEEE Trans. on Multimedia, 2016,18(6):1098-1110.[doi:10.1109/TMM.2016.2547343]
    [23] Wang SQ, Gu K, Zhang XF, Lin WS, Ma SW, Gao W. Reduced-Reference quality assessment of screen content images. IEEE Trans. on Circuits and Systems for Video Technology, 2016,PP(99):1-1.[doi:10.1109/TCSVT.2016.2602764]
    [24] Sheikh HR, Wang Z, Cormack L, Bovik AC. LIVE image quality assessment database release 2. 2005. http://live.ece.utexas.edu/research/quality
    [25] Larson EC, Chandler DM. Categorical image quality (CSIQ) database. 2009. http://vision.okstate.edu/csiq
    [26] Ponomarenko N, Egiazarian K. Tampere image database 2008 TID2008. 2008. http://www.ponomarenko.info/tid2008.html
    [27] Ponomarenko N, Ieremeiev O, Tampere V. Image database (TID2013). 2013. http://www.ponomarenko.info/tid2013.html
    [28] ITU, Iternational Telecommunication Union. BT.500:Methodology for the subjective assessment of the quality of television pictures. 2002. https://www.itu.int/rec/R-REC-BT.500
    [29] NTIA/ITS. Web-Enabled subjective test (WEST) software. 2014. http://www.its.bldrdoc.gov/resources/video-quality-research/web-enabled-subjective-test-west.aspx
    [30] Seshadrinathan K, Soundararajan R, Bovik AC, Cormack LK. Study of subjective and objective quality assessment of video. IEEE Trans. on Image Processing, 2010,19(6):1427-1441.[doi:10.1109/TIP.2010.2042111]
    [31] Yang H, Lin WS, Deng CW. Image activity measure (IAM) for screen image segmentation. In:Proc. of the IEEE Int'l Conf. on Image Processing. 2012. 1569-1572. https://sites.google.com/site/yanghuan689/
    [32] Moorthy AC, Bovik AC. Blind image quality assessment:From scene statistics to perceptual quality. IEEE Trans. on Image Processing, 2011,20(12):3350-3364.[doi:10.1109/TIP.2011.2147325]
    [33] Moorthy AK, Bovik AC. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010,17(5):513-516.[doi:10.1109/LSP.2010.2043888]
    [34] Mittal A, Moorthy AK, Bovik AC. No-Reference image quality assessment in the spatial domain. IEEE Trans. on Image Processing, 2012,21(12):4695-4708.[doi:10.1109/TIP.2012.2214050]
    [35] Chang CC, Lin CJ. LIBSVM:A library for support vector machines. 2001. http://www.csie.ntu.edu.tw/~cjlin/index.html
    附中文参考文献:
    [5] 蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展.电子与信息学报,2010,32(1):219-226. http://jeit.ie.ac.cn/CN/abstract/abstract13977.shtml[doi:10.3724/SP.J.1146.2009.00091]
    [6] 王志明.无参考图像质量评价综述.自动化学报,2015,6:1062-1079. http://www.aas.net.cn/CN/abstract/abstract18682.shtml[doi:10.16383/j.aas.2015.c140404]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

朱映映,曹磊,王旭.无参考屏幕内容图像质量评价.软件学报,2018,29(4):973-986

Copy
Share
Article Metrics
  • Abstract:4255
  • PDF: 8425
  • HTML: 3474
  • Cited by: 0
History
  • Received:April 30,2017
  • Revised:June 26,2017
  • Online: November 29,2017
You are the first2041624Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063