Object Tracking via Low-Rank Redetection Based Multiple Feature Fusion Spatio-Temporal Context Learning
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61572296, 61472227, 61303086, 61328205); Natural Science Foundation of Shandong Province, China (ZR2015FL020), Open Project Program of the National Laboratory of Pattern Recognition (201600024)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The spatio-temporal tracking (STC) algorithm can effectively track object using the structural information contained in the context around the object in real time. However the algorithm only exploits single gray object feature information in order to make the object representation discriminative. Moreover, it fails to initialize when tracking drift due to occlusion problems. Aiming at the existing weaknesses of the spatio-temporal context algorithm, a novel low-rank redetection based multiple feature fusion STC tracking algorithm is proposed in this paper. Firstly, multiple feature fusion based spatio-temporal context is extracted to construct complicated spatio-temporal context information, which improves the effectiveness of object representation by taking full advantage of the feature information around the object. Then, a simple and effective matrix decomposition method is used to give a low rank expression of the history tracking information, which can be embedded into the online detector. As a result, the uniform structure stability of the tracking algorithm is maintained to solve the relocation problem after the tracking failure. Experimental results on a series of tracking benchmark show the proposed algorithm has a better tracking precision and robustness than several stale-of-the-art methods, and it also have a good real-time performance.

    Reference
    Related
    Cited by
Get Citation

郭文,游思思,张天柱,徐常胜.低秩重检测的多特征时空上下文的视觉跟踪.软件学报,2018,29(4):1017-1028

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 26,2017
  • Revised:June 26,2017
  • Adopted:
  • Online: November 29,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063