State-of-the-Art of Ensemble Visualization
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61672055, 61702271); National Program on Key Basic Research Project of China (973) (2015CB352503); National Key Research and Development Program of China (2016QY02D0304)

  • Article
  • | |
  • Metrics
  • |
  • Reference [49]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Ensemble simulation is increasingly popular in scientific domain such as climate research, weather report, mathematics and physics. Ensemble simulation data sets are usually multi-valued, multi-variate, time-variant and large in scale. Thus, analyzing such data sets is challenging. Ensemble visualization helps scientists to compare ensemble members and give overall summary to the whole data sets by utilizing visual encoding and human interaction. It thus helps scientists to explore, conclude and validate their findings. This article describes analytical tasks and strategies for organizing existing works on visualization and visual analysis on ensemble simulation data sets. The analytical tasks for ensemble simulation data sets include comparing individual members and summarizing whole ensemble, whereas the analytical strategies consist of location-based method and feature-based method. This article reviews major works in ensemble visualization. It gives explanation to their visual design, interaction approaches and application scenarios, along with a discussion of recent trends and future research directions.

    Reference
    [1] Potter K, Wilson AT, Bremer PT, Williams DN, Doutriaux CM, Pascucci V, Johnson CR. Ensemble-Vis:A framework for the statistical visualization of ensemble data. In:Proc. of the IEEE Int'l Conf. on Data Mining Workshops. 2009. 233-240.[doi:10.1109/ICDMW.2009.55]
    [2] Allen M, Erickson D, Kendall W, Fu J, Ott L, Pawson S. The influence of internal model variability in GEOS-5 on interhemispheric CO2 exchange. Journal of Geophysical Research:Atmospheres, 2012,117(D10):1-20.[doi:10.1029/2011JD017059]
    [3] Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature, 2015,525(7567):47-55.[doi:10.1038/nature14956]
    [4] Shu Q, Guo H, Che L, Yuan X, Liu J, Liang J. EnsembleGraph:Interactive visual analysis of spatiotemporal behaviors in ensemble simulation data. In:Proc. of the IEEE Pacific Visualization Symp. 2016. 56-63.[doi:10.1109/PACIFICVIS.2016.7465251]
    [5] Waser J, Fuchs R, Ribicic H, Schindler B, Bloschl G, Groller E. World lines. IEEE Trans. on Visualization and Computer Graphics, 2010,16(6):1458-1467.[doi:10.1109/TVCG.2010.223]
    [6] Li X, Liu J, Mauzerall DL, Emmons LK, Walters S, Horowitz LW, Tao S. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China. Journal of Geophysical Research:Atmospheres, 2014,119(21):12338-12354.[doi:10.1002/2014JD021936]
    [7] Luo A, Kao D, Pang A. Visualizing spatial distribution data sets. In:Proc. of the Data Visualization Symp. 2003. 29-38.
    [8] Lodha SK, Pang A, Sheehan RE, Wittenbrink CM. UFLOW:Visualizing uncertainty in fluid flow. In:Proc. of the IEEE Visualization. 1996. 249-254.[doi:10.1109/VISUAL.1996.568116]
    [9] Höllt T, Magdy A, Chen G, Gopalakrishnan G, Hoteit I, Hansen C, Hadwiger M. Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures. In:Proc. of the IEEE Pacific Visualization Symp. 2013. 185-192.[doi:10.1109/PacificVis.2013.6596144]
    [10] Höllt T, Magdy A, Zhan P, Chen G, Gopalakrishnan G, Hoteit I, Hansen C, Hadwiger M. Ovis:A framework for visual analysis of ocean forecast ensembles. IEEE Trans. on Visualization and Computer Graphics, 2014,20(8):1114-1126.[doi:10.1109/TVCG. 2014.2307892]
    [11] Obermaier H, Joy KI. Future challenges for ensemble visualization. IEEE Computer Graphics and Applications, 2014,34(3):8-11.[doi:10.1109/MCG.2014.52]
    [12] Demir I, Dick C, Westermann R. Multi-Charts for comparative 3D ensemble visualization. IEEE Trans. on Visualization and Computer Graphics, 2014,20(12):2694-2703.[doi:10.1109/TVCG.2014.2346448]
    [13] Hao L, Healey CG, Bass SA. Effective visualization of temporal ensembles. IEEE Trans. on Visualization and Computer Graphics, 2016,22(1):787-796.[doi:10.1109/TVCG.2015.2468093]
    [14] Jarema M, Demir I, Kehrer J, Westermann R. Comparative visual analysis of vector field ensembles. In:Proc. of the IEEE Visual Analytics Science and Technology. IEEE, 2015. 81-88.[doi:10.1109/VAST.2015.7347634]
    [15] Piringer H, Pajer S, Berger W, Teichmann H. Comparative visual analysis of 2D function ensembles. Computer Graphics Forum, 2012,31(3.3):1195-1204.[doi:10.1111/j.1467-8659.2012.03112.x]
    [16] Poco J, Dasgupta A, Wei Y, Hargrove W, Schwalm C, Cook R, Bertini E, Silva C. SimilarityExplorer:A visual inter-comparison tool for multifaceted climate data. Computer Graphics Forum, 2014,33(3):341-350.[doi:10.1111/cgf.12390]
    [17] Malik MM, Heinzl C, Groeller ME. Comparative visualization for parameter studies of dataset series. IEEE Trans. on Visualization and Computer Graphics, 2010,16(5):829-840.[doi:10.1109/TVCG.2010.20]
    [18] Nocke T, Flechsig M, Bohm U. Visual exploration and evaluation of climate-related simulation data. In:Proc. of the Simulation Conf. 2007. 703-711.[doi:10.1109/WSC.2007.4419664]
    [19] Phadke MN, Pinto L, Alabi O, Harter J, Taylor Ⅱ RM, Wu X, Petersen H, Bass SA, Healey CG. Exploring ensemble visualization. Visualization and Data Analysis, 2012,8294(82940B):1-12.[doi:10.1117/12.912419]
    [20] Zhang C, Schultz T, Lawonn K, Eisemann E, Vilanova A. Glyphbased comparative visualization for diffusion tensor fields. IEEE Trans. on Visualization and Computer Graphics, 2016,22(1):797-806.[doi:10.1109/TVCG.2015.2467435]
    [21] Gosink L, Bensema K, Pulsipher T, Obermaier H, Henry M, Childs H, Joy KI. Characterizing and visualizing predictive uncertainty in numerical ensembles through Bayesian model averaging. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2703-2712.[doi:10.1109/TVCG.2013.138]
    [22] Potter K, Wilson A, Bremer PT, Williams D, Doutriaux C, Pascucci V, Johhson C. Visualization of uncertainty and ensemble data:Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems. Journal of Physics:Conf. Series, 2009,180(1):1-5.[doi:10.1088/1742-6596/180/1/012089]
    [23] Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead RJ. Noodles:A tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. on Visualization and Computer Graphics, 2010,16(6):1421-1430.[doi:10.1109/TVCG.2010. 181]
    [24] Wilson AT, Potter KC. Toward visual analysis of ensemble data sets. In:Proc. of the Workshop on Ultrascale Visualization. 2009. 48-53.[doi:10.1145/1838544.1838551]
    [25] Kao DT, Luo A, Dungan JL, Pang A. Visualizing spatially varying distribution data. In:Proc. of the Int'l Conf. on Information Visualisation. 2002. 219-226.[doi:10.1109/IV.2002.1028780]
    [26] Kehrer J, Muigg P, Doleisch H, Hauser H. Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Trans. on Visualization and Computer Graphics, 2011,17(7):934-946.[doi:10.1109/TVCG.2010.111]
    [27] Potter K, Kniss J, Riesenfeld R, Johnson CR. Visualizing summary statistics and uncertainty. Computer Graphics Forum, 2010, 29(3):823-832.[doi:10.1111/j.1467-8659.2009.01677.x]
    [28] Luo A, Pang A, Kao D. Visualizing spatial multivalue data. IEEE Computer Graphics and Applications, 2005,25(3):69-79.[doi:10. 1109/MCG.2005.71]
    [29] Pothkow K, Hege HC. Positional uncertainty of isocontours:Condition analysis and probabilistic measures. IEEE Trans. on Visualization and Computer Graphics, 2011,17(10):1393-1406.[doi:10.1109/TVCG.2010.247]
    [30] Thompson D, Levine JA, Bennett JC, Bremer PT, Gyulassy A, Pascucci V, Pebay PP. Analysis of large-scale scalar data using hixels. In:Proc. of the IEEE Symp. on Large Data Analysis and Visualization. 2011. 23-30.[doi:10.1109/LDAV.2011.6092313]
    [31] Guo H, Yuan X, Huang J, Zhu X. Coupled ensemble flow line advection and analysis. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2733-2742.[doi:10.1109/TVCG.2013.144]
    [32] Hummel M, Obermaier H, Garth C, Joy KI. Comparative visual analysis of Lagrangian transport in CFD ensembles. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2743-2752.[doi:10.1109/TVCG.2013.141]
    [33] Wittenbrink CM, Pang A, Lodha SK. Glyphs for visualizing uncertainty in vector fields. IEEE Trans. on Visualization and Computer Graphics, 1996,2(3):266-279.[doi:10.1109/2945.537309]
    [34] Alabi OS, Wu X, Harter JM, Phadke M, Pinto L, Petersen H, Bass S, Keifer M, Zhong S, Healey C, Taylor RM. Comparative visualization of ensembles using ensemble surface slicing. In:Proc. of the Visualization and Data Analysis. 2012. 82-94.
    [35] da Silva MJ, Zhang S, Demiralp C, Laidlaw DH. Visualizing the differences between diffusion tensor volume images. In:Proc. of the Int'l Society for Magnetic Resonance in Medicine Diffusion MRI Workshop. 2000. 1-3.
    [36] Ferstl F, Burger K, Westermann R. Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Trans. on Visualization and Computer Graphics, 2016,22(1):767-776.[doi:10.1109/TVCG.2015.2467204]
    [37] Mirzargar M, Whitaker RT, Kirby RM. Curve boxplot:Generalization of boxplot for ensembles of curves. IEEE Trans. on Visualization and Computer Graphics, 2014,20(12):2654-2663.[doi:10.1109/TVCG.2014.2346455]
    [38] Raj M, Mirzargar M, Kirby R, Whitaker RT, Preston JS. Evaluating alignment of shapes by ensemble visualization. IEEE Computer Graphics and Applications, 2015,36(3):100-109.[doi:10.1109/MCG.2015.70]
    [39] Whitaker RT, Mirzargar M, Kirby RM. Contour boxplots:A method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. on Visualization and Computer Graphics, 2013,19(12):2713-2722.[doi:10.1109/TVCG.2013.143]
    [40] Gleicher M, Albers D, Walker R, Jusufi I, Hansen CD, Roberts JC. Visual comparison for information visualization. Information Visualization, 2011,10(4):289-309.[doi:10.1177/1473871611416549]
    [41] Pothkow K, Hege HC. Nonparametric models for uncertainty visualization. Computer Graphics Forum, 2013,32(3):131-140.[doi:10.1111/cgf.12100]
    [42] Bruckner S, Moller T. Result-Driven exploration of simulation parameter spaces for visual effects design. IEEE Trans. on Visualization and Computer Graphics, 2010,16(6):1468-1476.[doi:10.1109/TVCG.2010.190]
    [43] Liu R, Guo H, Yuan X. A bottom-up scheme for user-defined feature comparison in ensemble data. In:Proc. of the ACM SIGGRAPH Asia 2015 Symp. on Visualization in High Performance Computing. 2015. 1-4.[doi:10.1145/2818517.2818531]
    [44] Shneiderman B. The eyes have it:A task by data type taxonomy for information visualizations. In:Proc. of the IEEE Symp. on Visual Languages. IEEE, 1996. 336-343.[doi:10.1109/VL.1996.545307]
    [45] Kao DL, Kramer MG, Love AL, Dungan JL, Pang AT. Visualizing distributions from multi-return lidar data to understand forest structure. The Cartographic Journal, 2005,42(1):35-47.[doi:10.1179/000870405X57257]
    [46] Liu R, Guo H, Zhang J, Yuan X. Comparative visualization of vector field ensembles based on longest common subsequence. In:Proc. of the IEEE Pacific Visualization Symp. 2016. 96-103.[doi:10.1109/PACIFICVIS.2016.7465256]
    [47] Pfaffelmoser T, Reitinger M, Westermann R. Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Computer Graphics Forum, 2011,30(3):951-960.[doi:10.1111/j.1467-8659.2011.01944.x]
    [48] Bordoloi UD, Kao DL, Shen HW. Visualization techniques for spatial probability density function data. Data Science Journal, 2004, 3:153-162.[doi:10.2481/dsj.3.153]
    [49] Liu R, Guo H, Yuan X. User-Defined feature comparison for vector field ensembles. Journal of Visualization, 2017,20(2):217-229.[doi:10.1007/s12650-016-0388-0]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

舒清雅,刘日晨,洪帆,张江,袁晓如.集合模拟可视化进展.软件学报,2018,29(2):506-523

Copy
Share
Article Metrics
  • Abstract:5056
  • PDF: 6792
  • HTML: 3811
  • Cited by: 0
History
  • Received:October 15,2016
  • Revised:January 22,2017
  • Online: October 09,2017
You are the first2038072Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063