Survey of Matrix Factorization Based Recommendation Methods by Integrating Social Information
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61370129, 61375062, 61632004)

  • Article
  • | |
  • Metrics
  • |
  • Reference [95]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the increasing of social network, social recommendation becomes hot research topic in recommendation systems. Matrix factorization based (MF-based) recommendation model gradually becomes the key component of social recommendation due to its high expansibility and flexibility. Thus, this paper focuses on MF-based social recommendation methods. Firstly, it reviews the existing social recommendation models according to the model construction strategies. Next, it conducts a series of experiments on real-world datasets to demonstrate the performance of different social recommendation methods from three perspectives including whole-users, cold start-users, and long-tail items. Finally, the paper analyzes the problems of MF-based social recommendation model, and discusses the possible future research directions and development trends in this research area.

    Reference
    [1] Ricci F, Rokach L, Shapira B, Kantor P. Recommender Systems Handbook. 2nd ed., Springer-Verlag, 2015. 1-29.[doi:10.1007/978-0-387-85820-3]
    [2] Balabanovic M, Shoham Y. Fab:Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.[doi:10.1145/245108.245124]
    [3] Resnick P, Iacovou N, Suchak Mtrom P. GroupLens:An open architecture for collaborative filtering of netnews. In:Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work. 1994. 175-186.[doi:10.1145/192844.192905]
    [4] Deshpande M, Karypis G. Item-Based top-n, recommendation algorithms. ACM Trans. on Information Systems, 2004,22(1):143-177.[doi:10.1145/963770.963776]
    [5] Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J. GroupLens:Applying collaborative filtering to usenet news. Communications of the ACM, 2000,40(3):77-87.[doi:10.1145/245108.245126]
    [6] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-Item collaborative filtering. IEEE Internet Computing, 2003, 7(1):76-80.[doi:10.1109/MIC.2003.1167344]
    [7] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In:Proc. of the 22nd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. 1999. 230-237.[doi:10.1145/312624.312682]
    [8] Fouss F, Pirotte A, Renders JM, Saerens M. Random-Walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. on Knowledge and Data Engineering, 2007,19(3):355-369.[doi:10.1109/TKDE. 2007.46]
    [9] Tian G, Jing L. Recommending scientific articles using bi-relational graph-based iterative RWR. In:Proc. of the 7th ACM Conf. on Recommender Systems. 2013. 399-402.[doi:10.1145/2507157.2507212]
    [10] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009,42(8):30-38.[doi:10. 1109/MC.2009.263]
    [11] Claypool M, Gokhale A, Mir T, Mir T, Murnikov P, Netes D, Sartin M. Combining content-based and collaborative filters in a online newspaper. In:Proc. of the ACM SIGIR Workshop on Recommender Systems. 1999.
    [12] Pazzani MJ. A framework for collaborative, content-based and demographic filtering. Journal of Artificial Intelligence Review, 1999,13(5-6):393-408.[doi:10.1023/A:1006544522159]
    [13] Good N, Schafer JB, Konstan JA, Borchers Al, Sarwar B, Herlocker J, Riedl J. Combining collaborative filtering with personal agents for better recommendations. In:Proc. of the National Conf. on Artificial Intelligence. 1999. 439-446.
    [14] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.[doi:10.1109/TKDE.2005.99]
    [15] Wang GX, Liu HP. A survey of personalized recommendation system. Computer Engineering and Applications, 2012,48(7):66-76(in Chinese with English abstract).[doi:10.3778/j.issn.1002-8331.2012.07.018]
    [16] Shi Y, Larson M, Hanjalic A. Collaborative filtering beyond the user-item matrix:A survey of the state of the art and future challenges. ACM Computing Surveys, 2014,47(1):1-45.[doi:10.1145/2556270]
    [17] Li J, Xia F, Wang W, Chen Z, Asabere NY, Jiang H. Acrec:A co-authorship based random walk model for academic collaboration recommendation. In:Proc. of the 23rd Int'l Conf, on World Wide Web. ACM Press, 2014. 1209-1214.[doi:10.1145/2567948. 2579034]
    [18] Marsden PV, Friedkin NE. Network studies of social influence. Sociological Methods & Research, 1993,22(1):127-151.[doi:10. 1177/0049124193022001006]
    [19] Wasserman S, Faust K. Social network analysis:Methods and Applications. Cambridge:Cambridge University Press, 1994. 3-27.
    [20] Koenigstein N, Dror G, Koren Y. Yahoo! music recommendations:Modeling music ratings with temporal dynamics and item taxonomy. In:Proc. of the 5th ACM Conf. on Recommender Systems. ACM Press, 2011. 165-172.[doi:10.1145/2043932. 2043964]
    [21] Kautz H, Selman B, Shah M. Referral Web:Combining social networks and collaborative filtering. Communications of the ACM, 1997,40(3):63-65.[doi:10.1145/245108.245123]
    [22] Cui C, Shen J, Nie L, Hong R, Ma J. Augmented collaborative filtering for sparseness reduction in personalized POI recommendation. ACM Trans. on Intelligent Systems and Technology, 2017,8(5):Article No.71.[doi:10.1145/3086635]
    [23] Tang J, Hu X, Liu H. Social recommendation:A review. Social Network Analysis and Mining, 2013,3(4):1113-1133.[doi:10. 1007/s13278-013-0141-9]
    [24] Meng XW, Liu SD, Zhang YJ, Hu X. Research on social recommender systems. Ruan Jian Xue Bao/Journal of Software, 2015, 26(6):1356-1372(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [25] Massa P, Avesani P. Trust-Aware recommender systems. In:Proc. of the ACM Conf. on Recommender Systems. New York:ACM Press, 2007. 17-24.[doi:10.1145/1297231.1297235]
    [26] Ma H, Yang H, Lyu MR, King I. SoRec:Social recommendation using probabilistic matrix factorization. In:Proc. of the 17th ACM Conf. on Information and Knowledge Management. New York:ACM Press, 2008. 931-940.[doi:10.1145/1458082.1458205]
    [27] Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In:Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM Press, 2009. 203-210.[doi:10.1145/1571941.1571978]
    [28] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In:Proc. of the 4th ACM Conf. on Recommender Systems. New York:ACM Press. 2010. 135-142.[doi:10.1145/1864708.1864736]
    [29] Ma H, Zhou DY, Liu C, Lyu MR, King I. Recommender systems with social regularization. In:Proc. of the 4th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2011. 287-296.[doi:10.1145/1935826.1935877]
    [30] Tang JL, Hu X, Gao HJ, Liu H. Exploiting local and global social context for recommendation. In:Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI Press, 2013. 2712-2718.
    [31] Yang B, Lei Y, Liu DY, Liu JM. Social collaborative filtering by trust. In:Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI Press, 2013. 2747-2753.
    [32] Fang H, Bao Y, Zhang J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation. In:Proc. of the 28th AAAI Conf. on Artificial Intelligence. AAAI Press, 2014. 30-36.
    [33] Guo G, Zhang J, Yorke-Smith N. TrustSVD:Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In:Proc. of the 29th AAAI Conf. on Artificial Intelligence. AAAI Press, 2015. 123-129.
    [34] Yang B, Lei Y, Liu DY, Liu JM. Social collaborative filtering by trust. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017,39(8):1633-1647.[doi:10.1109/TPAMI.2016.2605085]
    [35] Liu X, Tong JJ, Song M. Collaborative recommendation based on social community detection. Journal of China Universities of Posts and Telecommunications, 2014,21(Supplement 1):20-25,45.[doi:10.1016/S1005-8885(14)60517-3]
    [36] Li H, Wu DM, Tang WB, Mamoulis N. Overlapping community regularization for rating prediction in social recommender systems. In:Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM Press, 2015. 27-34.[doi:10.1145/2792838.2800171]
    [37] Tang JL, Wang SH, Hu X, Yin DW, Bi YZ, Chang Yi, Liu H. Recommendation with social dimensions. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence. AAAI Press, 2016. 251-257.
    [38] Chaney AJB, Blei DM, Eliassi-Rad T. A probabilistic model for using social networks in personalized item recommendation. In:Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM Press, 2015. 43-50.[doi:10.1145/2792838.2800193]
    [39] Sedhain S, Menon AK, Sanner S, Xie L, Braziunas D. Low-Rank linear cold-start recommendation from social data. In:Proc. of the 31th AAAI Conf. on Artificial Intelligence. AAAI Press, 2017. 1502-1508.
    [40] Shen Y, Jin R. Learning personal+ social latent factor model for social recommendation. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2012. 1303-1311.[doi:10.1145/2339530.2339732]
    [41] Ma H. An experimental study on implicit social recommendation. In:Proc. of the 36th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM Press, 2013. 73-82.[doi:10.1145/2484028.2484059]
    [42] Kharrat FB, Elkhlifi A, Faiz R. Empirical study of social collaborative filtering algorithm. In:Proc. of the Asian Conf. on Intelligent Information and Database Systems. Berlin, Heidelberg:Springer-Verlag, 2016. 85-95.[doi:10.1007/978-3-662-49390-8_8]
    [43] Jamali M, Ester M. Trustwalker:A random walk model for combining trust-based and item-based recommendation. In:Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2009. 397-406.[doi:10.1145/1557019.1557067]
    [44] Jamali M, Ester M. Using a trust network to improve top-N recommendation. In:Proc. of the 3rd ACM Conf. on Recommender Systems. New York:ACM Press, 2009. 181-188.[doi:10.1145/1639714.1639745]
    [45] Herlocker J, Konstan JA, Riedl J. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Journal of Information Retrieval. 2002,5(4):287-310.[doi:10.1023/A:1020443909834]
    [46] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In:Proc. of the 22nd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM Press, 1999. 230-237.[doi:10.1145/312624.312682]
    [47] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In:Proc. of the 20th Int'l Conf. on Neural Information Processing Systems. 2007. 1257-1264.
    [48] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In:Proc. of the 25th Int'l Conf. on Machine Learning. 2008. 880-887.[doi:10.1145/1390156.1390267]
    [49] Jing LP, Wang P, Yang L. Sparse probabilistic matrix factorization by Laplace distribution for collaborative filtering. In:Proc. of the 24th Int'l Conf. on Artificial Intelligence. AAAI Press, 2015. 1771-1777.
    [50] Schölkopf B, Hofmann T, Zhou DY. Semi-Supervised learning on directed graphs. In:Proc. of the 17th Int'l Conf. on Neural Information Processing Systems. 2005. 1633-1640.
    [51] Zhou Y, Wilkinson D, Schreiber R, Pan R. Large-Scale parallel collaborative filtering for the netflix prize. In:Proc. of the Int'l Conf. on Algorithmic Applications in Management. 2008. 337-348.[doi:10.1007/978-3-540-68880-8_32]
    [52] Page L. The PageRank citation ranking:Bringing order to the Web. Stanford Digital Libraries Working Paper, 1998,9(1):1-14.
    [53] Koren Y. Factorization meets the neighborhood:A multifaceted collaborative filtering model. In:Proc. of the 14th Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2008. 426-434.[doi:10.1145/1401890.1401944]
    [54] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Journal of Nature, 2005,435(7043):814-818.[doi:10.1038/nature03607]
    [55] Yang J, Leskovec J. Overlapping community detection at scale:A nonnegative matrix factorization approach. In:Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2013. 587-596.[doi:10.1145/2433396.2433471]
    [56] Yang J, McAuley J, Leskovec J. Community detection in networks with node attributes. In:Proc. of the IEEE 13th Int'l Conf. on Data Mining. IEEE Press, 2013. 1151-1156.[doi:10.1109/ICDM.2013.167]
    [57] Tang L, Liu H. Scalable learning of collective behavior based on sparse social dimensions. In:Proc. of the 18th ACM Conf. on Information and Knowledge Management. New York:ACM Press, 2009. 1107-1116.[doi:10.1145/1645953. 1646094]
    [58] Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In:Proc. of the 19th Int'l Conf. on World Wide Web. New York:ACM Press, 2010. 641-650.[doi:10.1145/1772690.1772756]
    [59] Wang F, Li T, Wang X, Zhu S. Community discovery using nonnegative matrix factorization. Journal of Data Mining and Knowledge Discovery, 2011,22(3):493-521.[doi:10.1007/s10618-010-0181-y]
    [60] Sun Y, Han J. Mining heterogeneous information networks:Principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012,3(2):1-159.[doi:10.2200/S00433ED1V01Y201207DMK005]
    [61] McPherson M, Smith-Lovin L, Cook JM. Birds of a feather:Homophily in social networks. Annual Review of Sociology, 2001, 27(1):415-444.[doi:10.1146/annurev.soc.27.1.415]
    [62] Tang L, Liu H. Relational learning via latent social dimensions. In:Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2009. 817-826.[doi:10.1145/1557019.1557109]
    [63] Sedhain S, Sanner S, Braziunas D, Christensen J. Social collaborative filtering for cold-start recommendations. In:Proc. of the 8th ACM Conf. on Recommender Systems. New York:ACM Press, 2014. 345-348.[doi:10.1145/2645710.2645772]
    [64] Krohn-Grimberghe A, Drumond L, Freudenthaler C, Schmidt-Thieme L. Multi-Relational matrix factorization using bayesian personalized ranking for social network data. In:Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2012. 173-182.[doi:10.1145/2124295.2124317]
    [65] Gantner Z, Drumond L, Freudenthaler C, Rendle S, Schmidt-Thieme L. Learning attribute-to-feature mappings for cold-start recommendations. In:Proc. of the 2000 IEEE Int'l Conf. on Data Mining. IEEE Press, 2010. 176-185.[doi:10.1109/ICDM.2010. 129]
    [66] Guo G, Zhang J, Yorke-Smith N. A novel Bayesian similarity measure for recommender systems. In:Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI Press, 2013. 2619-2625.
    [67] Tang J, Gao H, Liu H. mTrust:Discerning multi-faceted trust in a connected world. In:Proc. of the 5th ACM Int'l Conf. on Web Search and Web Data Mining. New York:ACM Press, 2012. 93-102.[doi:10.1145/2124295.2124309]
    [68] Tang J, Gao H, Liu H, Das Sarma A. eTrust:Understanding trust evolution in an online world. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2012. 253-261.[doi:10.1145/2339530.2339574]
    [69] Massa P, Souren K, Salvetti M, Tomasoni D. Trustlet, open research on trust metrics. Scalable Computing:Practice and Experience, 2008,9(4):31-43.
    [70] Anderson C. The long tail:Why the future of business is selling less of more. Journal of Product Innovation Management, 2006, 24(3):274-276.
    [71] Herlocker JL, Konstan JA, Riedl J. Explaining collaborative filtering recommendations. In:Proc. of the 2000 ACM Conf. on Computer Supported Cooperative Work. New York:ACM Press, 2000. 241-250.[doi:10.1145/358916.358995]
    [72] Gedikli F, Jannach D, Ge M. How should I explain? A comparson of different explanation types for recommender systems. Journal of Human-Computer Studies, 2014,72(4):367-382.[doi:10.1016/j.ijhcs.2013.12.007]
    [73] Cramer H, Evers V, Ramlal S, van Someren M, Rutledge L, Stash N, Aroyo L, Wielinga B. The effects of transparency on trust in and acceptance of a content-based art recommender. Journal of User Modeling and User-Adapted Interaction, 2008,18(5):455-496.[doi:10.1007/s11257-008-9051-3]
    [74] Friedrich G, Zanker M. A taxonomy for generating explanations in recommender systems. Journal of AI Magazine, 2011,32(3):90-98.[doi:10.1609/aimag.v32i3.2365]
    [75] Sharma R, Ray S. Explanations in recommender systems:An overview. Int'l Journal of Business Information Systems, 2016,23(2):248-262.[doi:10.1504/IJBIS.2016.078909]
    [76] Symeonidis P, Nanopoulos A, Manolopoulos Y. Providing justifications in recommender systems. IEEE Trans. on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008,38(6):1262-1272.[doi:10.1109/TSMCA.2008.2003969]
    [77] Wang B, Ester M, Bu J, Cai D. Who also likes it? Generating the most persuasive social explanations in recommender systems. In:Proc. of the 28th AAAI Conf. on Artificial Intelligence. AAAI Press, 2014. 173-179.
    [78] Abdollahi B, Nasraoui O. Explainable matrix factorization for collaborative filtering. In:Proc. of the 25th Int'l Conf. on Companion on World Wide Web. 2016. 5-6.[doi:10.1145/2872518.2889405]
    [79] Kouki P, Fakhraei S, Foulds J, Eirinaki M, Getoor L. Hyper:A flexible and extensible probabilistic framework for hybrid recommender systems. In:Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM Press, 2015. 99-106.[doi:10. 1145/2792838.2800175]
    [80] Hu GN, Dai XY, Song Y, Huang SJ, Chen JJ. A synthetic approach for recommendation:Combining ratings, social relations, and reviews. In:Proc. of the 24th Int'l Joint Conf. on Artificial Intelligence. AAAI Press, 2015. 1756-1762.
    [81] Gemulla R, Nijkamp E, Haas PJ, Sismanis Y. Large-Scale matrix factorization with distributed stochastic gradient descent. In:Proc. of the 17th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM Press, 2011. 69-77.[doi:10. 1145/2020408.2020426]
    [82] Zhao SY, Li WJ. Fast asynchronous parallel stochastic gradient descent:A lock-free approach with convergence guarantee. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence. AAAI Press, 2016. 2379-2385.
    [83] Koren Y. Collaborative filtering with temporal dynamics. Journal of Communications of the ACM, 2010,53(4):89-97.[doi:10. 1145/1721654.1721677]
    [84] Sun GF, Wu L, Liu Q, Zhu C, Chen EH. Recommendations based on collaborative filtering by exploiting sequential behaviors. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2721-2733(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4478.htm[doi:10.3724/SP.J.1001.2013.04478]
    [85] Wu CY, Ahmed A, Beutel A, Smola AJ, Jing H. Recurrent recommender networks. In:Proc. of the 10th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM Press, 2017. 495-503.[doi:10.1145/3018661.3018689]
    [86] York SN. Dynamic Social Networks. New York:Springer-Verlag, 2014.[doi:10.1007/978-1-4614-6170-8_100447]
    [87] Wang GX, Wang LJ, Liu HP. Study progress of privacy protection techniques used in personalized recommendation system. Journal of Aplication Research of Computers, 2012,29(6):2001-2008(in Chinese with English abstract).[doi:10.3969/j.issn.1001-3695.2012.06.001]
    [88] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. In:Proc. of the 24th Int'l Conf. on Machine Learning. New York:ACM Press, 2007. 791-798.[doi:10.1145/1273496.1273596]
    [89] Hamel P, Lemieux S, Bengio Y, Eck D. Temporal pooling and multiscale learning for automatic annotation and ranking of music audio. In:Proc. of the ISMIR. 2011. 729-734.
    [90] Elkahky AM, Song Y, He X. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In:Proc. of the 24th Int'l Conf. on World Wide Web. 2015. 278-288.[doi:10.1145/2736277.2741667]
    附中文参考文献:
    [15] 王国霞,刘贺平.个性化推荐系统综述.计算机工程与应用,2012,48(7):66-76.[doi:10.3778/j.issn.1002-8331.2012.07.018]
    [24] 孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究.软件学报,2015,26(6):1356-1372. http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [84] 孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法.软件学报,2013,24(11):2721-2733. http://www.jos.org.cn/1000-9825/4478.htm[doi:10.3724/SP.J.1001.2013.04478]
    [87] 王国霞,王丽君,刘贺平.个性化推荐系统隐私保护策略研究进展.计算机应用研究,2012,29(6):2001-2008.[doi:10.3969/j.issn. 1001-3695.2012.06.001]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘华锋,景丽萍,于剑.融合社交信息的矩阵分解推荐方法研究综述.软件学报,2018,29(2):340-362

Copy
Share
Article Metrics
  • Abstract:7062
  • PDF: 12635
  • HTML: 4107
  • Cited by: 0
History
  • Received:June 20,2017
  • Revised:July 25,2017
  • Online: October 09,2017
You are the first2032455Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063