Community Detection Algorithm Based on Node Embedding Vector Representation
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61170112, 61532006); Natural Science Foundation of Beijing, China (4172016, KZ201410011014)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Community detection is very important in theoretical and practical for complex research. According to the principle of distributed word vector, a community detection algorithm based on node embedding vector (CDNEV) is proposed in this study. In order to construct the distributed vector of network nodes, a heuristic random walk model is put forward. The node sequence obtained by the heuristic random walk model is used as the context for nodes, and the distributed vector of nodes is learned by SkipGram model. Based on the distributed vector of nodes that are selected from the local node as the center of the K-Means clustering algorithm center, all nodes in a network are clustered with K-Means algorithm, and the community structure are conclude by clustering result. Based on real complex networks and artificial networks used in other state-of-the-art algorithms, comprehensive experiments are conducted. For comparison purpose, typical community detection algorithms are selected to be evaluated. On real networks, the F1 value of CDNEV algorithm is increased 19% on average. The F1 value can be increased by 15% on artificial networks. Experimental results demonstrate that both accuracy and efficiency of CDNEV algorithm outperform other state-of-the-art algorithms.

    Reference
    Related
    Cited by
Get Citation

韩忠明,刘雯,李梦琪,郑晨烨,谭旭升,段大高.基于节点向量表达的复杂网络社团划分算法.软件学报,2019,30(4):1045-1061

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 09,2016
  • Revised:June 09,2017
  • Adopted:
  • Online: April 01,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063