Feature Learning of Weight-distribution for Diagnosis of Alzheimer's Disease
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61602072, 61422204, 61473149, 61732006, 61573023); Chongqing Cutting-edge and Applied Foundation Research Program (cstc2016jcyjA0063, cstc2018jcyjAX0502, cstc2014jcyjA40035, cstc2014jcyjA1316, cstc2016jcyjA0521); Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501014, KJ1601003, KJ1710248, KJ1401010, KJ1601015); Chongqing Municipal Key Laboratory of Institutions of Higher Education ([2017]3)

  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In the field of medical imaging analysis using machine learning, the challenge is lack of training sample. In order to solve the problem, a weight-distribution based Lasso (Least absolute shrinkage and selection operator) feature learning model is proposed and applied to early diagnosis of Alzheimer's Disease (AD). Specifically, the proposed diagnosis method is consisted of two components:weight-distribution based Lasso feature selection (WDL) and large margin distribution machine (LDM) for classification. Firstly, in order to capture data distribution information among multimodal features, the WDL feature selection model was built, to improve on the conventional Lasso model via adding a regularization item of weight-distribution. Secondly, in order to achieve better generalization and accuracy on classification, and also to keep complementary information among multimodal features, the LDM algorithm is used for the training of the classifier. To evaluate the effectiveness of the proposed learning model, 202 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with multimodal features were employed. Experimental results on the ADNI database show that it can recognize AD from Normal Controls (NC) with 97.5% accuracy, recognize Mild Cognitive Impairment (MCI) from NC with 83.1% accuracy, and recognize progressive MCI (pMCI) patients from stable MCI (sMCI) ones with 84.8% accuracy, which demonstrate that it can significantly improve the performance of early AD diagnosis and achieve feature ranking in terms of discrimination via optimized weight vector.

    Reference
    [1] Hu K, Wang Y, Chen K, Hou L, Zhang X. Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis. Neurocomputing, 2016,175(1):132-145.[doi:10.1016/j.neucom.2015.10.043]
    [2] Wachinger C, Reuter M. Domain adaptation for Alzheimer's disease diagnostics. NeuroImage, 2016,139(1):470-479.[doi:10. 1016/j.neuroimage.2016.05.053]
    [3] Liu M, Zhang D, Shen D. Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment. IEEE Trans. on Medical Imaging, 2016,35(6):1463-1474.[doi:10.1109/TMI.2016.2515021]
    [4] Jie B, Zhang D, Cheng B, Shen D. Manifold regularized multitask feature learning for multimodality disease classification. Human Brain Mapping, 2015,36(2):489-507.[doi:10.1002/hbm.22642]
    [5] Cheng B, Liu M, Zhang D, Munsell BC, Shen D. Domain transfer learning for MCI conversion prediction. IEEE Trans. on Biomedical Engineering, 2015,62(7):1805-1817.[doi:10.1109/TBME.2015.2404809]
    [6] Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. NeuroImage, 2015,104(1):398-412.[doi:10.1016/j.neuroimage.2014.10.002]
    [7] Liu F, Wee CY, Chen HF, Shen D. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification. NeuroImage, 2014,84(1):466-475.[doi:10.1016/j.neuroimage. 2013.09.015]
    [8] Liu M, Zhang D, Shen D. Inherent structure based multi-view learning with multi-atlas feature representation for Alzheimer's disease diagnosis. IEEE Trans. on Biomedical Engineering, 2016,63(7):1473-1482.[doi:10.1109/TBME.2015.2496233]
    [9] Zhu X, Suk H, Shen D. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage, 2014,100(1):91-105.[doi:10.1016/j.neuroimage.2014.05.078]
    [10] Zhou J, Liu J, Narayan VA, Ye J. Modeling disease progression via multi-task learning. NeuroImage, 2013,78(1):233-248.[doi:10.1016/j.neuroimage.2013.03.073]
    [11] Cheng B, Liu M, Suk H, Shen D, Zhang D. Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior, 2015,9(4):913-926.[doi:10.1007/s11682-015-9356-x]
    [12] Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 2011,55(3):856-867.[doi:10.1016/j.neuroimage.2011.01.008]
    [13] Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology, 2012,12(1):1-12.[doi:10.1186/1471-2377-12-46]
    [14] Zhang D, Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 2012,59(2):895-907.[doi:10.1016/j.neuroimage.2011.09.069]
    [15] Dukart J, Sambataro F, Bertolino A. Accurate prediction of conversion to Alzheimer's disease using imaging, genetic, and neuropsychological biomarkers. Journal of Alzheimer's Disease, 2016,49(4):1143-1159.[doi:10.3233/JAD-150570]
    [16] Zhang D, Shen D. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One, 2012,7(3):e33182.[doi:10.1371/journal.pone.0033182]
    [17] Cheng B, Zhang D, Chen S, Kaufer DI, Shen D. Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers. Neuroinformatics, 2013,11(3):339-353.[doi:10.1007/s12021-013-9180-7]
    [18] Gao W, Zhou Z. On the doubt about margin explanation of boosting. Artificial Intelligence, 2013,203(1):1-18.[doi:10.1016/j.artint.2013.07.002]
    [19] Zhang T, Zhou Z. Large margin distribution machine. In:Proc. of the 20th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. 2014. 313-322.[doi:10.1145/2623330.2623710]
    [20] Zhou Y, Zhou Z. Large margin distribution learning with cost interval and unlabeled data. IEEE Trans. on Knowledge and Data Engineering, 2016,28(7):1749-1763.[doi:10.1109/TKDE.2016.2535283]
    [21] Geng X. Label distribution learning. IEEE Trans. on Knowledge and Data Engineering, 2016,28(7):1734-1748.[doi:10.1109/TKDE.2016.2545658]
    [22] Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. on Medical Imaging, 1998,17(1):87-97.[doi:10.1109/42.668698]
    [23] Wang Y, Nie J, Yap PT, Shi F, Guo L, Shen D. Robust deformable-surface-based skull-stripping for large-scale studies. In:Proc. of the Conf. on Medical Image Computing and Computer-Assisted Intervention. 2011. 635-642.[doi:10.1007/978-3-642-23626-6_78]
    [24] Zhang YY, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. on Medical Imaging, 2001,20(1):45-57.[doi:10.1109/42.906424]
    [25] Shen D, Davatzikos C. HAMMER:Hierarchical attribute matching mechanism for elastic registration. IEEE Trans. on Medical Imaging, 2002,21(11):1421-1439.[doi:10.1109/TMI.2002.803111]
    [26] Vapnik VN. An overview of statistical learning theory. IEEE Trans. on Neural Networks, 1999,10(5):988-999.[doi:10.1109/72. 788640]
    [27] Chen X, Pan W, Kwok JT, Carbonell JG. Accelerated gradient method for multi-task sparse learning problem. In:Proc. of the 9th IEEE Int'l Conf. on Data Mining and Knowledge Discovery. 2009. 746-751.[doi:10.1109/ICDM.2009.128]
    [28] Nemirovski A. Efficient methods in convex programming. 1995. http://www2.isye.gatech.edu/~nemirovs/
    [29] Chang CC, Lin CJ. LIBSVM:A library for support vector machines. 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    [30] Park MY, Hastie T. L1-regularization path algorithm for generalized linear models. Journal of Royal Statistical Society, 2007,69(4):659-677.
    [31] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statist Software, 2010,33(1):1-22.
    [32] Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 2011,32(12):19-27.[doi:10.1016/j.neurobiolaging.2010.05.023]
    [33] Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage, 2013,65(2):511-521.[doi:10. 1016/j.neuroimage.2012.09.058]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

程波,丁毅,张道强.用于阿尔茨海默病诊断的权值分布特征学习.软件学报,2019,30(4):1002-1014

Copy
Share
Article Metrics
  • Abstract:2528
  • PDF: 4184
  • HTML: 1951
  • Cited by: 0
History
  • Received:December 05,2016
  • Revised:January 28,2017
  • Online: April 01,2019
You are the first2033271Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063