Survey on Multi Class Twin Support Vector Machines
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61672522, 61379101); National Key Basic Research Program of China (973) (2013CB329502)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Twin support vector machines have drawn extensive attention for their simple model, high training speed and good performance. The initial twin support vector machine is designed for binary classification. However, multi class classification problems are also common in practice. In recent years, researchers have devoted themselves to the study of multi class twin support vector machines. Various mulit class twin support vector machines have been proposed. The study of multi class twin support vector machines has made great progress. This paper aims to review the development of multi class twin support vector machines, classify and analyze them with the respect to the basic theories and geometric meanings. According to the structures, the paper divides the machines into the following groups:"one-versus-all" strategy based multi class twin support vector machines, "one-versus-one" strategy based multi class twin support vector machines, binary tree based multi class twin support vector machines, "one-versus-one-versus-rest" strategy based multi class twin support vector machines, and "all-versus-one" strategy based multi class twin support vector machines. Although the training processes of direct acyclic graph based multi class twin support vector machines are much similar with that of "one-versus-one" based approachs, the decision processes have their own characteristics and disadvantages, and therefore they are divided into a separate group. This paper analyzes and summarizes the ideas and theories of different multi class twin support vector machines, and presents experimental results to compare the performances. This review can make it easy for novices to understand the essential differences and help to choose the suitable multi class twin support vector machine for a practical problem.

    Reference
    Related
    Cited by
Get Citation

丁世飞,张健,张谢锴,安悦瑄.多分类孪生支持向量机研究进展.软件学报,2018,29(1):89-108

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2017
  • Revised:February 25,2017
  • Adopted:
  • Online: July 20,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063