Registration Based on Dual-Feature Gaussian Mixture Model and Dual-Constraint Spatial Transformation
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (41661080); Doctoral Scientific Research Foundation of Yunnan Normal University (01000205020503065); College Students' Scientific Research Training Project of Yunnan Normal University (ky2016-114); National Undergraduate Training Program for Innovation and Entrepreneurship (201710681017)

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Non-Rigid point set registration is very important for many fields of study. Currently, the famous algorithms generally use correspondence estimation and transformation update based on single feature and single constraint. But performance and application area of the single feature and constraint based algorithms are limited. This paper presents a non-rigid point set registration method based on dual-feature Gaussian mixture model and dual-constraint transformation. Firstly, a dual-feature descriptor is defined and global feature and local feature are used to build the dual-feature descriptor. Then, Gaussian mixture model is improved to obtain a dual-feature Gaussian mixture model by the dual-feature descriptor. Finally, a local structure constraint descriptor is defined and used together with global structure constraint descriptor to preserve the local and global structures of point set. A method is presented for running estimate correspondence that uses dual-feature Gaussian mixture model and updates dual-constraint transformation based on Gaussian radial basis function iteratively to match non-rigid point set accurately. Performance of the presented method is evaluated by synthetic point set registration, CMU sequence image registration, remote sensing registration, IMM face data registration and true image feature point registration. Comparing with other eight state-of-the-ate methods, the new method shows the best alignments in most scenarios.

    Reference
    [1] Guo Y, Sohel F, Bennamoun M, Wan J, Lu M. An accurate and robust range image registration algorithm for 3D object modeling. IEEE Trans. on Multimedia, 2014,16(5):1377-1390.[doi:10.1109/TMM.2014.2316145]
    [2] Wu YF, Wang W, Lu KQ, Wei YD, Chen ZC. A new method for registration of 3D point sets with low overlapping ratios. In:Proc. of the 13th CIRP Conf. on Computer Aided Tolerancing (Procedia CIRP), Vol.27. 2015. 202-206.[doi:10.1016/j.procir.2015. 04.067]
    [3] Li L, Wu Z, Zha ZJ, Jiang S, Huang Q. Matching content-based saliency regions for partial-duplicate image retrieval. In:Proc. of the 2011 IEEE Int'l Conf. on Multimedia and Expo. 2011. 1-6.[doi:10.1109/ICME.2011.6011895]
    [4] Patel MS, Patel NM, Holia MS. Feature based multi-view image registration using SURF. In:Proc. of the 2015 Int'l Symp. on Advanced Computing and Communication (ISACC). 2015. 213-218.[doi:10.1109/ISACC.2015.7377344]
    [5] Jiang J, Ma X, Cai Z, Hu R. Sparse support regression for image super-resolution. IEEE Photonics Journal, 2015,7(5):1-11.[doi:10.1109/JPHOT.2015.2484287]
    [6] Peng L, Li G, Xiao M, Xie L. Robust CPD algorithm for non-rigid point set registration based on structure information. PLoS ONE, 2016,11(2):No.e0148483.[doi:10.1371/journal.pone.0148483]
    [7] Ma JY, Zhao J, Ma Y, Tian JW. Non-Rigid visible and infrared face registration via regularized Gaussian fields criterion. Pattern Recognition, 2015,48(3):772-784.[doi:10.1016/j.patcog.2014.09.005]
    [8] Park SH, Lee KM. A line feature matching technique based on an eigenvector approach. Computer Vision and Image Understanding, 2000,77(3):263-283.[doi:10.1006/cviu.2000.0808]
    [9] Kong WX, Kimia BB. On solving 2D and 3D puzzles using curve matching. In:Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol.2. 2001. 583-590.[doi:10.1109/CVPR.2001.991015]
    [10] Liu T, Liu W, Qiao L, Luo T, Peng X. Point set registration based on implicit surface fitting with equivalent distance. In:Proc. of the 2015 IEEE Int'l Conf. on Image Processing (ICIP). 2015. 2680-2684.[doi:10.1109/ICIP.2015.7351289]
    [11] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(4):509-522.[doi:10.1109/34.993558]
    [12] Körtgen M, Park GJ, Novotni M, Klein R. 3D shape matching with shape context. In:Proc. of the 7th Central European Seminar on Computer Graphics. 2003. 22-24.
    [13] Sundar H, Silver D, Gagvani N, Dickinson S. Skeleton based shape matching and retruevel. In:Proc. of the Shape Modeling Int'l (SMI 2003). 2003. 130-139.
    [14] Zhou F, De la Torre F. Factorized graph matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016,38(9):1774-1789.[doi:10.1109/TΠAMI.2015.2501802]
    [15] Caetano TS, Cheng L, Le QV, Smola AJ. Learning graph matching. In:Proc. of the 11th IEEE Int'l Conf. on Computer Vision. Rio de Janeiro:IEEE, 2007. 1-8.
    [16] Leordeanu M, Hebert M. Smoothing-Based optimization. In:Proc. of the 2008 IEEE Conf. on Computer Vision and Pattern Recognition. Anchorage:IEEE, 2008. 1-8.
    [17] Caetano TS, McAuley JJ, Cheng L, Le QV, Smola AJ. Learning graph matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(6):1048-1058.
    [18] Leordeanu M, Sukthankar R, Hebert M. Unsupervised learning for graph matching. Int'l Journal of Computer Vision, 2012,96(1):28-45.[doi:10.1007/s11263-011-0442-2]
    [19] Torresani L, Kolmogorov V, Rother C. A dual decomposition approach to feature correspondence. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35(2):259-271.[doi:10.1109/TPAMI.2012.105]
    [20] Xiao D, Zahra D, Bourgeat P, Berghofer P, Tamayo OA, Wimberley C, Gregoire MC, Salvado O. An improved 3D shape context based non-rigid registration method and its application to small animal skeletons registration. Computerized Medical Imaging and Graphics, 2010,34(4):321-332.[doi:10.1016/j.compmedimag.2009.12.003]
    [21] Jian B, Vemuri BC. Robust point set registration using Gaussian mixture models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011,33(8):1633-1645.[doi:10.1109/TPAMI.2010.223]
    [22] Yang Y, Ong SH, Foong KWC. A robust global and local mixture distance based non-rigid point set registration. Pattern Recognition, 2015,48(1):156-173.[doi:10.1016/j.patcog.2014.06.017]
    [23] Chui HL, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003,89(2-3):114-141.[doi:10.1016/S1077-3142(03)00009-2]
    [24] Rangarajan A, Chui HL, Bookstein FL. The softassign procrustes matching algorithm. In:Proc. of the 15th Int'l Conf. on Information Processing in Medical Imaging, Poultney. Vermont:Springer-Verlag, 1997. 29-42.
    [25] Chui HL, Rambo J, Duncan J, Schultz R, Rangarajan A. Registration of cortical anatomical structures via robust 3D point matching. In:Proc. of the 16th Int'l Conf. on Information Processing in Medical Imaging. Visegrád:Springer-Verlag, 1999. 168-181.
    [26] Gold S, Rangarajan A, Lu CP, Pappu S, Mjolsness E. New algorithms for 2D and 3D point matching:Pose estimation and correspondence. Pattern Recognition, 1998,31(8):1019-1031.
    [27] Myronenko A, Song XB, Carreira-Perpiñán MÁ. Non-Rigid point set registration:Coherent point drift. In:Proc. of the 2006 Advances in Neural Information Processing Systems 19. Cambridge:MIT Press, 2006. 1009-1016.
    [28] Myronenko A, Song XB. Point set registration:Coherent point drift. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(12):2262-2275.[doi:10.1109/TPAMI.2010.46]
    [29] Greengard L, Strain J. The fast Gauss transform. SIAM Journal of Scientific and Statistical Computing, 1991,12(1):79-94.
    [30] Markovsky I. Structured low-rank approximation and its applications. Automatica, 2008,44(4):891-909.
    [31] Ma JY, Zhao J, Tian JW, Tu ZW, Yuille AL. Robust estimation of non-rigid transformation for point set registration. In:Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Portland:IEEE, 2013. 2147-2154.
    [32] Scott DW. Parametric statistical modeling by minimum integrated square error. Technometrics, 2001,43(3):274-285.
    [33] Wang G, Wang ZC, Chen YF, Zhao WD. A robust non-rigid point set registration method based on asymmetric Gaussian representation. Computer Vision and Image Understanding, 2015,141(2015):67-80.[doi:10.1016/j.cviu.2015.05.014]
    [34] Ma JY, Zhao J, Yuille AL. Non-Rigid point set registration by preserving global and local structures. IEEE Trans. on Image Processing, 2016,25(1):53-64.[doi:10.1109/TIP.2015.2467217]
    [35] Stegmann MB, Ersbøll BK, Larsen R, FAME-A flexible appearance modelling environment. IEEE Trans. on Medical Imaging, 2003,22(10):1319-1331.[doi:10.1109/TMI.2003.817780]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

魏梓泉,杨扬,张愫,杨昆.基于双特征高斯混合模型和双约束空间变换的配准.软件学报,2018,29(11):3575-3593

Copy
Share
Article Metrics
  • Abstract:3104
  • PDF: 4518
  • HTML: 2028
  • Cited by: 0
History
  • Received:January 20,2017
  • Revised:March 26,2017
  • Online: April 16,2018
You are the first2037987Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063