Data Gathering Algorithm Based on Compressive Sensing Under Lossy WSN
Author:
Affiliation:

Clc Number:

Fund Project:

National Science and Technology Major Projects of China (2014zx03006003)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Data gathering algorithm based on compressive sensing(CS) has enormous application potential in wireless sensor network(WSN) in which there is limited energy and a lot of redundant data. However, most existing studies assume that network is based on ideal link. This paper illustrates a situation by experiment that existing CS reconstruction quality will be seriously affected by lossy link, and proposes a CS data gathering algorithm based on retransmission and time series correlation prediction(CS-RTSC). The type of packet loss is modeled as element random loss(ERL) and block random loss(BRL). The loss type prediction algorithm based on sliding window statistics is designed to determine the type of packet loss when link packet loss occurs. Retransmission recovery is applied for ERL, and time series correlation prediction algorithm is designed to recover the loss for BRL. The simulation result indicates that the proposed algorithm can effectively reduce the impact of lossy link in CS data gathering. When the packet loss ratio is up to 30%, the relative error of CS reconstruction signal is only 0.1% higher than that of the CS reconstruction signal in the ideal link.

    Reference
    Related
    Cited by
Get Citation

韩哲,张霞,李鸥,张策,张大龙.面向有损链路的传感网压缩感知数据收集算法.软件学报,2017,28(12):3257-3273

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 25,2016
  • Revised:October 21,2016
  • Adopted:
  • Online: March 27,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063