Weighted Low Rank Subspace Clustering Based on A2 Norm
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61373055, 61672265), Industry Project of Provincial Department of Education of Jiangsu Province (JH10-28)

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to solve the problem of over-sparsity for within-class coefficients and over-density for between-class coefficients in SSC and LSR, this paper proposes a new subspace clustering based on Euclidean distance using A2 norm. Using the weighted method based on Euclidean distance, the coefficient representation obtained by this algorithm maintains the connections of the data points from the same subspace. Meanwhile, the algorithm can eliminate the connections between clusters. The clusters can be produced by using the spectral clustering with the similarity matrix which is constructed by this coefficient representation. The results of experiments indicate the presented method improves the accuracy of clustering.

    Reference
    [1] Wang WW, Li XP, Feng XC, Wang SQ. A survey on sparse subspace clustering. ActaAutomatica Sinica, 2015,41(8):1373-1384(in Chinese with English abstract).[doi:10.16383/j.aas.2015.c140891]
    [2] Vidal R, Ma Y, Sastry S. Generalized principal component analysis (GPCA). IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(12):1945-1959.[doi:10.1109/TPAMI.2005.244]
    [3] Rao S, Tron R, Vidal R, Ma Y. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(10):1832-1845.[doi:10.1109/TPAMI.2009.191]
    [4] Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In:Proc. of the 23rd Int'l Conf. on Machine Learning. New York:ACM Press, 2006. 593-600.[doi:10.1145/1143844.1143919]
    [5] Favaro P, Vidal R, Ravichandran A. A closed form solution to robust subspace estimation and clustering. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Colorado Springs:IEEE, 2011. 1801-1807.[doi:10.1109/CVPR.2011. 5995365]
    [6] Elhamifar E, Vidal R. Clustering disjoint subspaces via sparse representation. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. Dallas:IEEE, 2010. 1926-1929.[doi:10.1109/ICASSP.2010.5495317]
    [7] Yan J, Pollefeys M. A general framework for motion segmentation:Independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In:Proc. of the European Conf. on Computer Vision. Berlin:Springer-Verlag, 2006. 94-106.[doi:10.1007/11744085_8]
    [8] Goh A, Vidal R. Segmenting motions of different types by unsupervised manifold clustering. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Minneapolis:IEEE, 2007. 1-6.[doi:10.1109/CVPR.2007.383235]
    [9] Hu H, Lin Z, Feng J, Zhou J. Smooth representation clustering. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014. 3834-3841.[doi:10.1109/CVPR.2014.484]
    [10] Elhamifar E, Vidal R. Sparse subspace clustering:Algorithm, theory, and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013,35(11):2765-2781.[doi:10.1109/TPAMI.2013.57]
    [11] Liu G, Lin Z, Yan S, Sun J. Robust recovery of subspace structures by low-rank representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.[doi:10.1109/TPAMI.2012.88]
    [12] Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S. Robust and efficient subspace segmentation via least squares regression. In:Proc. of the European Conf. on Computer Vision. Berlin:Springer-Verlag, 2012. 347-360.[doi:10.1007/978-3-642-33786-4_26]
    [13] Chen J, Zhang H, Mao H, Sang Y, Yi Z. Symmetric low-rank representation for subspace clustering. Neurocomputing, 2016,173:1192-1202.[doi:10.1016/j.neucom.2015.08.077]
    [14] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-Constrained linear coding for image classification. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010. 3360-3367.[doi:10.1109/CVPR.2010.5540018]
    [15] Lu C, Feng J, Lin Z, Yan S. Correlation adaptive subspace segmentation by trace lasso. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2013. 1345-1352.[doi:10.1109/ICCV.2013.170]
    [16] Li B, Lu CY, Leng CC, Jin LB. Robust low rank subspace clustering based on local graph Laplace constraint. Acta Automatica Sinica, 2015,41(11):1971-1980(in Chinese with English abstract).[doi:10.16383/j.aas.2015.c150031]
    [17] Candès EJ, Li X, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM (JACM), 2011,58(3):11.[doi:10.1145/1970392.1970395]
    [18] Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews:Computational Statistics, 2010,2(4):433-459.[doi:10.1002/wics.101]
    [19] Xu J, Xu K, Chen K, Ruan J. Reweighted sparse subspace clustering. Computer Vision and Image Understanding, 2015,138:25-37.[doi:10.1016/j.cviu.2015.04.003]
    [20] Liu B, Jing L, Yu J, Li J. Robust graph learning via constrained elastic-net regularization. Neurocomputing, 2016,171:299-312.[doi:10.1016/j.neucom.2015.06.059]
    [21] Costeira JP, Kanade T. A multibody factorization method for independently moving objects. Int'l Journal of Computer Vision, 1998,29(3):159-179.[doi:10.1023/A:1008000628999]
    [22] Peng X, Yi Z, Tang H. Robust subspace clustering via thresholding ridge regression. In:Proc. of the AAAI. Austin:AAAI, 2015. 3827-3833.
    [23] Cai D, He X, Han J. Document clustering using locality preserving indexing. IEEE Trans. on Knowledge and Data Engineering, 2005,17(12):1624-1637.[doi:10.1109/TKDE.2005.198]
    [24] Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many:Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(6):643-660.[doi:10.1109/34.927464]
    [25] Martinez AR, Benavente R. The AR face database, 1998. Technical Report, Computer Vision Center, 2007.
    [26] Hull JJ. A database for handwritten text recognition research. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, 16(5):550-554.[doi:10.1109/34.291440]
    [27] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-Based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):2278-2324.[doi:10.1109/5.726791]
    [28] Tron R, Vidal R. A benchmark for the comparison of 3-d motion segmentation algorithms. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Minneapolis:IEEE, 2007. 1-8.[doi:10.1109/CVPR.2007.382974]
    附中文参考文献:[1] 王卫卫,李小平,冯象初,王斯琪.稀疏子空间聚类综述.自动化学报,2015,41(8):1373-1384.[doi:10.16383/j.aas.2015.c140891]
    [16] 李波,卢春园,冷成财,金连宝.基于局部图拉普拉斯约束的鲁棒低秩表示聚类方法.自动化学报,2015,41(11):1971-1980.[doi:10.16383/j.aas.2015.c150031]
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

傅文进,吴小俊.基于A2范数的加权低秩子空间聚类.软件学报,2017,28(12):3347-3357

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 28,2016
  • Revised:August 10,2016
  • Online: March 27,2017
You are the first2038055Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063