Fault Diagnosis for Microservices with Execution Trace Monitoring
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61402450, 61363003, 61572480); Natural Science Foundation of Beijing(4154088); CCF-Venustech Hongyan Research Initiative (CCF-VenustechRP2016007); National Key Technology R&D Program of China under Project(2015BAH55F02)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Microservice architecture is gradually adopted by more and more applications. How to effectively detect and locate faults is a key technology to guarantee the performance and reliability of microservices. Current approaches typically monitor physical metrics, and manually set alarm rules according to the domain knowledge. However, these approaches cannot automatically detect faults and locate root causes in fine granularity. To address the above issues, this work proposes a fault diagnosis approach for microservices based on the execution trace monitoring. First, dynamic instrumentation is used to monitor the execution traces crossing service components, and then call trees are used to describe the execution traces of user requests. Second, for the faults affecting the structure of execution traces, the tree edit distance is used to assess the abnormality degree of processing requests, and the method calls leading to failures are located by analyzing the difference between execution traces. Third, for the performance anomalies leading to the response delay, principal component analysis is used to extract the key method invocations causing unusual fluctuations in performance metrics. Experimental results show that this new approach can accurately characterize the execution trace of processing requests, and locate the methods that cause system failures and performance anomalies.

    Reference
    Related
    Cited by
Get Citation

王子勇,王焘,张文博,陈宁江,左春.一种基于执行轨迹监测的微服务故障诊断方法.软件学报,2017,28(6):1435-1454

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 21,2016
  • Revised:October 11,2016
  • Adopted:
  • Online: February 21,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063