Privacy Preserving Cluster Mining Method Based on Lattice
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61232002, 61572378, 61202034); CCF Chinese information technology open topic (CCF2014-01-02); Wuhan Innovation Team Project (2014070504020237); Wuhan University independent research project(2042016gf0020, 2016-2017)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Due to the various advantages of cloud computing, users tend to outsource data mining task to professional cloud service providers. However, user's privacy cannot be guaranteed. Currently, while many scholars are concerned about how to protect sensitive data from unauthorized access, few scholars engage research on data analysis. But if potential knowledge cannot be mined, the value of big data may not be fully utilized. This paper proposes a privacy preserving data mining (PPDM) method based on lattice, which support ciphertext intermediate point and distance homomorphic computing. Meanwhile, it builds a privacy preserving cloud ciphertext data clustering data mining Method. Users encrypt privacy data before outsource the data to cloud service providers, cloud service providers use homomorphic encryption to achieve privacy protection mining algorithms including k-means, hierarchical clustering and DBSCAN. Compared with the existing PPDM method, the presented method with high security is based on shortest vector difficulties (SVP) and the closest vector problem (CVP). Meanwhile, it maintains the accuracy of distance between two data, providing mining results with high accuracy and availability. Experiments are designed for the privacy preserving cluster mining (PPCM) with cardiac arrhythmia datasets of machine learning, and the experimental results show that the method based on lattice ensure not only security but also accuracy and performance.

    Reference
    Related
    Cited by
Get Citation

崔一辉,宋伟,王占兵,史成良,程芳权.一种基于格的隐私保护聚类数据挖掘方法.软件学报,2017,28(9):2293-2308

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 10,2016
  • Revised:November 10,2016
  • Adopted:
  • Online: September 02,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063