Diversified Mobile App Recommendation Combining Topic Model and Collaborative Filtering
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With rapid growth of mobile applications, users of mobile app platforms are facing problem of information overload. Large number of apps make it difficult for users to find appropriate ones, while many long tail apps are submerged in the resource pool and are unknown to most users. Meanwhile, existing recommendation methods usually pay more attention to accuracy than diversity, making popular apps as most recommended items. As a result, the overall exposure rate of mobile apps is low as behavior data accumulated by the system is gradually biased towards popular apps, which leads to a poor recommendation performance in the long run. To solve this problem, this article first proposes two recommendation methods, named LDA_MF and LDA_CF, to improve existing methods. LDA_MF combines user topic model and app topic model with matrix factorization model MF, and LDA_CF takes both tag information of apps and user behavior data into consideration. In order to take advantages of different algorithms and increase the diversity of recommendation results without sacrificing accuracy, a hybrid recommendation algorithm is also provided to combine LDA_MF, LDA_CF and item-based collaborative filtering models. A large real data set is used to evaluate the proposed methods, and the results show that the presented approach achieves better diversity and good recommendation accuracy.

    Reference
    Related
    Cited by
Get Citation

黄璐,林川杰,何军,刘红岩,杜小勇.融合主题模型和协同过滤的多样化移动应用推荐.软件学报,2017,28(3):708-720

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 31,2016
  • Revised:September 14,2016
  • Adopted:
  • Online: June 06,2018
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063