Mining Topic Sentiment in Micro-Blogging Based on Micro-Blogger Social Relation
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Sentiment analysis in micro-blogging is an important task in mining social media, and has important theoretical and application value in personalized recommendation and public opinion analysis. Topic sentiment models have attracted much attention due to their good performance and ability of synchronized topic and the sentiment analysis in micro-blogs. However, most existing models simply assume that topic sentiment distributions of different micro-blogs are independent, which is contrary to the realistic status in micro-blogging and thus further leads to unsatisfactory modeling of micro-blogger's true sentiment. To address the issues, a probabilistic model, SRTSM (social relation topic sentiment model) is proposed. The new model introduces sentiment and micro-blogger social relation into LDA inference framework and achieves synchronized detection of sentiment and topic in micro-blogging. Extensive experiments on Sina Weibo show that SRTSM outperforms state-of-the-art unsupervised approaches including JST, SLDA and DPLDA significantly in terms of sentiment classification accuracy.

    Reference
    Related
    Cited by
Get Citation

黄发良,于戈,张继连,李超雄,元昌安,卢景丽.基于社交关系的微博主题情感挖掘.软件学报,2017,28(3):694-707

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 22,2016
  • Revised:September 14,2016
  • Adopted:
  • Online: June 06,2018
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063