Anomaly Detection for Trajectory Big Data: Advancements and Framework
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61370101, U1501252, U1401256); Shanghai Municipal Eduation Commission Innovation Plan (14ZZ045); China West Normal University Special Fundation of National Programme Cultivation (16C005)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The vigorous development of positioning technology and pervasive computing has given rise to trajectory big data, i.e. the high speed trajectory data stream that originated from positioning devices. Analyzing trajectory big data timely and effectively enables us to discover the abnormal patterns that hide in trajectory data streams, and therefore to provide effective support to applications such as urban planning, traffic management, and security controlling. The traditional anomaly detection algorithms cannot be applied to outlier detection in trajectory big data directly due to the characteristics of trajectories such as uncertainty, un-limitedness, time-varying evolvability, sparsity and skewness distribution. In addition, most of trajectory outlier detection methods designed for static trajectory dataset usually assume a priori known data distribution while disregarding the temporal property of trajectory data, and thus are unsuitable for identifying the evolutionary trajectory outlier. When dealing with huge amount of low-quality trajectory big data, a series of issues need to be addressed. Those issues include coping with the concept drifts of time-varying data distribution in limited system resources, online detecting trajectory outliers, analyzing causal interactions among traffic outliers, identifying the evolutionary related trajectory outlier in larger spatial-temporal regions, and analyzing the hidden abnormal events and the root cause in trajectory anomalies by using application related multi-source heterogeneous data. Aiming at solving the problems mentioned above, this paper reviews the existing trajectory outlier detecting techniques from several categories, describes the system architecture of outlier detection in trajectory big data, and discusses the research directions such as outlier detection in trajectory stream, visualization and evolutionary analysis in trajectory outlier detection, benchmark for trajectory outlier detection system, and data fusion in semantic analysis for anomaly detection results.

    Reference
    Related
    Cited by
Get Citation

毛嘉莉,金澈清,章志刚,周傲英.轨迹大数据异常检测:研究进展及系统框架.软件学报,2017,28(1):17-34

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 25,2016
  • Revised:August 18,2016
  • Adopted:
  • Online: October 27,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063