Image Set Distance Learning Via Double Sparse Regularizations
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61370129, 61375062, 61632004); CCF-Tencent Open Fund (RAGR20150116); Program for Changjiang Scholars and Innovative Research Team in University (IRT201206); Grants from Baoding City Science & Technology and Intellectual Property Right Bureau (16ZG026)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of video acquisition and transmission technologies, and the widespread applications of mobile terminal devices, more and more set-based images are available. The key issue of image set classification is how to measure the distance between two sets over the complexity of inner structure of the set. To address this problem, this paper presents a framework, called double sparse regularizations for image set distance learning (DSRID). In DSRID, the distance between two sets is calculated by the distance between two prominent sub-structures in each set, which enhances the robustness and discrimination of the measure. According to different set representations, this framework is implemented in traditional Euclidean space and two common manifolds, i.e., symmetric positive definite matrices manifold (SPD manifold) and Grassmann manifold. Extensive experiments demonstrate the effectiveness of the proposed method on set-based face recognition, action recognition and object categorization.

    Reference
    Related
    Cited by
Get Citation

刘博,景丽萍,于剑.基于双稀疏正则的图像集距离学习.软件学报,2017,28(8):2113-2125

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 02,2016
  • Revised:August 18,2016
  • Adopted:
  • Online: August 15,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063