Anomaly Detection Algorithm Based on the Local Distance of Density-Based Sampling Data
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (U1435220); National High-Tech Research and Development Plan of China (863) (2012AA011206)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Anomaly detection is an important research area of data mining.Current outlier mining approaches based on the distance or the nearest neighbor can result in unmanageable long operation time when applied to massive high-dimensional data.Many improvements have been proposed to improve the algorithms, but the detection is ineffective.This paper presents a new anomaly detection algorithm based on the local distance of density-based sampling data.First, the density-based of probability sampling method is used to find a subset of the data in detection.Then, the method based on the local distance of local outlier detection is used to calculate the abnormal factor of each object in the subset.In using the density-based of sample data, the abnormal factor is obtained both as local outlier factor of the subset and as the approximate value of global outlier factor of the hole data.Having the abnormal factor of each object in the subset, data points with higher factor score indicate higher degree of outliers.Experimental results show that, compared with the existing algorithms, this algorithm has higher detection accuracy and less computation time.The algorithm has higher efficiency and stronger scalability for various dimensions and size of data points.

    Reference
    Related
    Cited by
Get Citation

付培国,胡晓惠.基于密度偏倚抽样的局部距离异常检测方法.软件学报,2017,28(10):2625-2639

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 15,2015
  • Revised:September 07,2016
  • Adopted:
  • Online: October 19,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063