Evolutionary Community Detection in Dynamic Networks
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61300192); National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2013BAH33F02); Fundamental Research Funds for the Central Universities (ZYGX2014J052); Science and Technology Support Program of Sichuan, China (2015GZ0096)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The number of communities and temporal smoothness are always the main limitations in the field of evolutionary community detection for dynamic networks. In this paper, a new multi-objective approach based on the label propagation algorithm (LDMGA) is proposed. Employing the idea of multi-objective genetic algorithm, the evolutionary clustering algorithm is transformed into a multi-objective optimization problem, which not only improves the clustering quality, but also minimizes clustering drift from one time step to the successive one. Population initialization based on the label propagation algorithm improves the clustering quality of initial individuals. In addition, applying the label propagation algorithm to the mutation progress enhances the quality of clustering and the convergence rate. At the same time, the combination of the multi-objective genetic algorithm and the label propagation algorithm makes the algorithm more scalable, and the running time increases linearly with the increase of the number of nodes or edges. The experiment on the synthesized datasets and real datasets shows that the proposed algorithm consistently provides good clustering quality and scalability.

    Reference
    Related
    Cited by
Get Citation

牛新征,司伟钰,佘堃.基于进化聚类的动态网络社团发现.软件学报,2017,28(7):1773-1789

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 24,2015
  • Revised:March 18,2016
  • Adopted:
  • Online: October 19,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063