Malware Detection Method Based on Active Learning
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61175039, 61221063, 61375040); International Research Collaboration Project of Shaanxi Province (2013KW11); Fundamental Research Funds for Central Universities (2012jdhz08)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Existing techniques of malware detection depend on observations of sufficient malware samples. However, only a few samples can be obtained when a novel malware first appears in the World Wide Web, which brings challenges to detect novel malware and its variants. This paper studies the anomaly and similarity of processes with respect to their access behaviors under data flow dependency network, and defines estimated risk for malware detection. Furthermore, the study proposes a malware detection method based on active learning by minimizing the estimated risk. This method achieves encouraging performance even with small samples, and is applicable to defending against rapidly increasing novel malware. Experimental results on a real-world dataset, which consists of access behaviors of 8 340 benign and 7 257 malicious processes, demonstrate better performance of the presented method than traditional malware detection method based on statistical classifier. Even with only 1% known samples, the new method achieves 5.55% error rate, which is 36.5% lower than the error rate of traditional statistical classifier based method.

    Reference
    Related
    Cited by
Get Citation

毛蔚轩,蔡忠闽,童力.一种基于主动学习的恶意代码检测方法.软件学报,2017,28(2):384-397

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 28,2015
  • Revised:March 03,2016
  • Adopted:
  • Online: January 24,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063