Energy Consumption Measurement and Management in Cloud Computing Environment
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61402183); Natural Science Foundation of Guangdong Province of China (S2012030006242); Guangdong Provincial Science and Technology Projects (2014B010117001, 2014A010103022, 2014A01010 3008, 2013B090200021, 2013B010202001); Fundamental Research Funds for the Central Universities, SCUT (2015ZZ098)

  • Article
  • | |
  • Metrics
  • |
  • Reference [71]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Cloud computing is leading a revolution in computer science. However at the meantime, the large-scale ecosystem of cloud infrastructure brings about the problem of huge energy consumption. Therefore, the energy consumption management has been a research hotspot in recent years and to a large extent, the sustainable development of cloud computing has been tightly associated with the techniques of energy consumption measurement and management. Furthermore, the technique of power measurement in cloud environment is the foundation for the building of energy models as well as the evaluation of resource scheduling algorithms. In this paper, based on a survey of a wide range of methods measuring energy consumption of VMs, hosts or the whole system, four effective approaches that are widely applied in cloud system are addressed. The approaches include direct measuring techniques based on hardware or software, energy consumption estimate based on energy model, energy consumption measurement under virtualized environment, and energy consumption assessment based on simulation technology respectively. The paper analyzes and compares the advantages, drawbacks and best-fit situations of these methods. In addition, it discusses and points out the trends of future researches on energy management. These trends include smart power supply module, application type oriented energy consumption models, energy consumption model designed for mixed workloads, efficient cloud simulation toolkit for dynamic management, energy management in dynamic heterogeneous distributed cluster, energy preservation with resources scheduling towards tasks processing big data, and power provision scheduling with green energy.

    Reference
    [1] Slaven B, Neven V. Cost effectiveness of commercial computing clouds. Information Systems, 2013,38(4):495-508.[doi:10.1016/j.is.2012.11.002]
    [2] Armbrust M, Fox A, Griffith R, Joseph A D, Katz R, Konwinski A. A view of cloud computing. Communications of the ACM, 2010, 53(4):50-58.[doi:10.1145/1721654.1721672]
    [3] Che K, Zheng WM. Cloud computing:System instances and current research.Ruan Jian Xue Bao/Journal of Software, 2009,20(5):1337-1348(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3493.htm[doi:10.3724/SP.J.1001.2009.03493]
    [4] Smit M, Simmons B, Litoiu M. Distributed application-level monitoring for heterogeneous clouds using stream processing. Future Generation Computer Systems, 2013,29(8):2103-2114.[doi:10.1016/j.future.2013.01.009]
    [5] Lin W, Wang JZ, Liang C, Qi D. A threshold-based dynamic resource allocation scheme for cloud computing. Procedia Engineering, 2011,23:695-703.[doi:10.1016/j.proeng.2011.11.2568]
    [6] Lin W, Liang C, Wang J Z, Buyya R. Bandwidth-Aware divisible task scheduling for cloud computing. Software:Practice and Experience, 2014,44(2):163-174.[doi:10.1002/spe.2163]
    [7] Lin W, Zhu C, Li J, Liu B, Lian H. Novel algorithms and equivalence optimisation for resource allocation in cloud computing. Int'l Journal of Web & Grid Services, 2015,11(2):193-210.[doi:10.1504/IJWGS.2015.068899]
    [8] Lin WW, Qi DY. A cloud resources scheduling strategy based on dynamic virtual resources reconfiguration:China. 201010268105. 7[P].2011.01.05(in Chinese).
    [9] Ganglia Monitoring System. http://ganglia.info/
    [10] Mehta S, Neogi A. ReCon:A tool to recommend dynamic server consolidation in multi-cluster data centers. In:Proc. of the IEEE Network Operations and Management Symp., NOMS 2008. Salvador:IEEE, 2008. 363-370.[doi:10.1109/NOMS.2008.4575156]
    [11] Krishnamurthy B, Neogi A, Sengupta B, Singh R. Data tagging architecture for system monitoring in dynamic environments. In:Proc. of the Network Operations and Management Symp.(NOMS 2008). Salvador:IEEE, 2008. 395-402.[doi:10.1109/NOMS. 2008.4575160]
    [12] Stoess J, Lang C, Bellosa F. Energy management for hypervisor-based virtual machines. In:Proc. of the USENIX Annual Technical Conf. CA:USENIX, 2007. 1-14. https://www.usenix.org/legacy/event/usenix07/
    [13] Verma A, Ahuja P, Neogi A. pMapper:Power and migration cost aware application placement in virtualized systems. In:Issarny V, Schantz R, eds. Proc. of the ACM/IFIP/USENIX 9th Int'l Middleware Conf. Leuven:IFIP, 2008. 243-264.[doi:10.1007/978-3-540-89856-6_13]
    [14] IBM Active Energy Manager. https://www-01.ibm.com/support/knowledgecenter/SSAV7B_635/com.ibm.director.aem.helps.doc/frb0_main.html
    [15] Raghu HV, Saurav SK, Bapu BS. PAAS:Power aware algorithm for scheduling in high performance computing. In:Proc. of the IEEE/ACM 6th Int'l Conf. on Utility and Cloud Computing. Dresden:IEEE, 2013. 327-332.[doi:10.1109/UCC.2013.71]
    [16] Beloglazov A, Abawajy JH, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768.[doi:10.1016/j.future.2011.04.017]
    [17] Chen Q. Towards energy-aware VM scheduling in IaaS clouds through empirical studies[MS. Thesis]. Amsterdam:University of Amsterdam, 2011.
    [18] Watts up? Plug load meters. https://www.wattsupmeters.com/
    [19] Basmadjian R, Ali N, Niedermeier F, Meer HD, Giuliani G. A methodology to predict the power consumption of servers in data centres. In:Proc. of the ACM SIGCOMM 2nd Int'l Conf. on Energy-Efficient Computing and Networking(e-Energy 2011). ACM, 2011.[doi:10.1145/2318716.2318718]
    [20] Feller E, Morin C, Leprince D. State of the art of power saving in clusters and results from the EDF case study. Institut National de Recherche en Informatique et en Automatique(INRIA), 2010. http://hal.inria.fr/docs/00/54/38/10/PDF/RR-7473.pdf
    [21] Ye KJ, Wu ZH, Jiang XH, He QM. Power management of virtualized cloud computing platform. Chinese Journal of Computers, 2012,35(6):1262-1285(in Chinese with English abstract).[doi:10.3724/SP.J. 1016.2012.01262]
    [22] Luo L, Wu W, Tsai WT, Di D, Zhang F. Simulation of power consumption of cloud data center. Simulation Modelling Practice and Theory, 2013,39:152-171.[doi:10.1016/j.simpat.2013.08.004]
    [23] Allalouf M, Arbitman Y, Factor M, Kat RI, Meth K, Naor D. Storage modeling for power estimation. In:Proc. of the SYSTOR 2009:The Israeli Experimental Systems Conf., SYSTOR 2009. New York:ACM, 2009. 3:1-3:10.[doi:10.1145/1534530. 1534535]
    [24] Ferreto T, Netto M, Calheiros R, Rose CD. Server consolidation with migration control for virtualized data centers. Future Generation Computer Systems, 2011,27:1027-1034.[doi:10.1016/j.future.2011.04.016]
    [25] Song J, Li T, Wang Z, Zhu Z. Study on energy-consumption regularities of cloud computing systems by a novel evaluation model. Computing, 2013,95(4):269-287.[doi:10.1007/s00607-012-0218-8]
    [26] Luo L, Wu WJ, Zhang F. Energy modeling based on cloud data center. Ruan Jian Xue Bao/Journal of Software, 2014,25(7):1371-1387(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4604.htm[doi:10.13328/j.cnki.jos.004604]
    [27] Kim N, Cho J, Seo E. Energy-Based accounting and scheduling of virtual machines in a cloud system. In:Proc. of the IEEE/ACM Int'l Conf. on Green Computing and Communications(GreenCom 2011). Sichuan:IEEE, 2011. 176-181.[doi:10.1109/GreenCom. 2011.37]
    [28] Cherkasova L, Gardner R. Measuring CPU overhead for I/O processing in the Xen virtual machine monitor. In:Proc. of the USENIX Annual Technical Conf. Anaheim:USENIX, 2005. 387-390. https://www.usenix.org/legacy/event/usenix05/
    [29] Kansal A, Zhao F, Liu J, Kothari N, Bhattacharya AA. Virtual machine power metering and provisioning. In:Proc. of the 1st ACM Symp. on Cloud Computing. Indianapolis:ACM, 2010. 39-50.[doi:10.1145/1807128.1807136]
    [30] Microsoft Joulemeter. http://research.microsoft.com/en-us/projects/joulemeter/
    [31] Kernel Virtual Machine. http://www.linux-kvm.org/page/Main_Page
    [32] Joulemeter:Computational Energy Measurement and Optimization. http://research.microsoft.com/en-us/projects/joulemeter/default. aspx
    [33] Fenn M, Murphy MA, Goasguen S. A study of a KVM-based cluster for grid computing. In:Proc. of the 47th Annual Southeast Regional Conf., ser. ACM-SE 47. New York:ACM, 2009. 34:1-34:6.[doi:10.1145/1566445.1566492]
    [34] Che J, He Q, Gao Q, Huang D. Performance measuring and comparing of virtual machine monitors. In:Proc. of the IEEE/IFIP Int'l Conf. on Embedded and Ubiquitous Computing, EUC 2008, Vol. 2. Shanghai:IEEE, 2008. 381-386.[doi:10.1109/EUC.2008.127]
    [35] Calheiros RN, Ranjan R, Rose CAFD, Buyya R. CloudSim:A novel framework for modeling and simulation of cloud computing infrastructures and services. Technical Report, Grid Computing and Distributed Systems(GRIDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, 2009.
    [36] Greencloud-The green cloud simulator. http://greencloud.gforge.uni.lu/index.html
    [37] Bąk S, Krystek M, Kurowski K, Oleksiak A, Piatek W, Waglarz J. Gssim-A tool for distributed computing experiments. Scientific Programming, 2011,19(4):231-251.[doi:10.1155/2011/925395]
    [38] Buyya R, Murshed M. GridSim:A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurrency and Computation:Practice and Experience, 2002,14(13-15):1175-1220.[doi:10.1002/cpe.710]
    [39] Lin WW, Liu B, Zhu LC, Qi DY. CSP-Based resource allocation model and algorithms for energy-efficient cloud computing. Journal on Communications, 2013,34(12):33-41(in Chinese with English abstract).[doi:10.3969/j.issn.1000-436x.2013.12.004]
    [40] Jussien N, Rochart G, Lorca X. Choco:An open source Java constraint programming library. In:Proc. of the Workshop on Open-Source Software for Integer and Contraint Programming(OSSICP 2008). 2008. 1-10. https://projects.coin-or.org/Events/wiki/CpAiOr2008
    [41] Choco-A free and Open-Source Java Library for Constraint Programming. http://choco-solver.org/
    [42] Van HN, Tran FD, Menaud JM. SLA-Aware virtual resource management for cloud infrastructures. In:Proc. of th 9th IEEE Int'l Conf. on Computer and Information Technology(CIT 2009). Xiamen:IEEE, 2009. 357-362.[doi:10.1109/CIT.2009.109]
    [43] Lui TJ, Stirling W, Marcy HO. Get smart. IEEE Power & Energy Magazine, 2010,8(3):66-78.[doi:10.1109/MPE.2010.936353]
    [44] Wang JH, Feng XW, Feng Y, Zhu R. An improved research of simulation platform in cloud computing. Science Technology and Engineering, 2013,13(19):5543-5549(in Chinese with English abstract).[doi:10.3969/j.issn.1671-1815.2013.19.022]
    [45] Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 benchmark. In:Proc. of the 2014 IEEE Int'l Symp. on Performance Analysis of Systems and Software(ISPASS). IEEE, 2011. 227-236.[doi:10.1109/ISPASS.2011.5762739]
    [46] Lakra AV, Yadav DK. Multi-Objective tasks scheduling algorithm for cloud computing throughput optimization. Procedia Computer Science, 2015,107-113.[doi:10.1016/j.procs.2015.04.158]
    [47] Cheng CL, Pan Y, Zhang DY. Energy saving resource scheduling algorithm in cloud environment. Systems Engineering and Electronics, 2013,35(11):2416-2423(in Chinese with English abstract).
    [48] Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768.[doi:10.1016/j.future.2011.04.017]
    [49] Chen F, Grundy J, Yang Y, Schneider JG, He Q. Experimental analysis of task-based energy consumption in cloud computing systems. In:Proc. of the 4th ACM/SPEC Int'l Conf. on Performance Engineering(ICPE 2013). Praguec:ACM, 2013. 295-306.[doi:10.1145/2479871.2479911]
    [50] Xiao P, Zhao S. A low-cost power measuring technique for virtual machine in cloud environments. Int'l Journal of Grid and Distributed Computing, 2013,6(3):69-80.
    [51] Zhou Z, Liu F, Li Z. Pricing bilateral electricity trade between smart grids and hybrid green datacenters. In:Proc. of the 2015 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems. Portland:ACM, 2015. 443-444.[doi:10.1145/2796314.2745884]
    [52] Deng W, Liu FM, Jin H, Li D. Leveraging renewable energy in cloud computing datacenters:State of the art and future research. Chinese Journal of Computers, 2013,36(3):582-598(in Chinese with English abstract).[doi:10.3724/SP.J.1016.2013.00582]
    [53] Deng W, Liu F, Jin H, Wu C. SmartDPSS:Cost-Minimizing multi-source power supply for datacenters with arbitrary demand. In:Proc. of the 2013 IEEE 33rd Int'l Conf. on Distributed Computing Systems. IEEE, 2013. 420-429.[doi:10.1109/ICDCS.2013.59]
    [54] Ren C, Wang D, Urgaonkar B, Sivasubramaniam A. Carbon-Aware energy capacity planning for datacenters. IEEE Int'l Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS 2012). Washington, 2012. 391-400.[doi:10.1109/MASCOTS.2012.51]
    [55] Li C, Qouneh A, Li T. Characterizing and analyzing renewable energy driven data centers. In:Proc. of the ACM SIGMETRICS Joint Int'l Conf. on Measurement and Modeling of Computer Systems. ACM, 2011. 323-324.[doi:10.1145/2007116.2007158]
    [56] Liu Z, Chen Y, Bash C, Wierman A, Gmach D, Wang Z, Marwah M, Hyser C. Renewable and cooling aware workload management for sustainable data centers. Performance Evaluation Review, 2012,40(1):175-186.[doi:10.1145/2318857.2254779]
    [57] Li C, Qouneh A, Li T. iSwitch:Coordinating and optimizing renewable energy powered server clusters. In:Proc. of the the 39th Annual Int'l Symp. on Computer Architecture(ISCA). IEEE, 2012. 512-523.[doi:10.1145/2366231.2337218]
    [58] Deng W, Liu F, Jin H, Wu C, Liu X. MultiGreen:Cost-Minimizing multi-source datacenter power supply with online control. In:Proc. of the 4th ACM Int'l Conf. on Future Energy Systems(ACM e-Energy 2013). Berkeley, 2013. 149-160.[doi:10.1145/2487166.2487183]
    [59] Xu F, Liu F, Jin H, Vasilakos AV. Managing performance overhead of virtual machines in cloud computing:A survey. Proc. of the IEEE(State of the Art and Future Directions.), 2014,102(1):11-31.[doi:10.1109/JPROC.2013.2287711]
    [60] Zhou Z, Liu F, Xu Y, Zou R, Xu H, Lui JCS, Jin H. Carbon-Aware load balancing for geo-distributed cloud services. In:Proc. of the IEEE 21st Int'l Symp. on Modeling, Analysis & Simulation of Computer and Telecommunication Systems(MASCOTS). 2013. 232-241.[doi:10.1109/MASCOTS.2013.31]
    [61] Liu F, Zhou Z, Jin H, Li B, Li B, Jiang H. On arbitrating the power-performance tradeoff in SaaS clouds. In:Proc. of the IEEE INFOCOM. 2013. 872-880.[doi:10.1109/TPDS.2013.208]
    [62] Zhou Z, Liu F, Li B, Li B, Jin H, Zou R, Liu Z. Fuel cell generation in geo-distributed cloud services:A quantitative study. In:Proc. of the IEEE 34th Int'l Conf. on Distributed Computing Systems(ICDCS). IEEE Computer Society, 2014. 52-61.[doi:10.1109/ICDCS.2014.14]
    附中文参考文献:
    [3] 陈康,郑纬民.云计算:系统实例与研究现状.软件学报,2009,20(5):1337-1348. http://www.jos.org.cn/1000-9825/3493.htm[doi:10.3724/SP.J.1001.2009.03493]
    [8] 林伟伟,齐德昱.一种基于动态重配置虚拟资源的云计算资源调度方法:中国,申请号:201010268105.7[P].2011.01.05.
    [21] 叶可江,吴朝晖,姜晓红,何钦铭.虚拟化云计算平台的能耗管理.计算机学报,2012,35(6):1262-1285.[doi:10.3724/SP.J.1016. 2012.01262]
    [26] 罗亮,吴文峻,张飞.面向云计算数据中心的能耗建模方法.软件学报,2014,25(7):1371-1387. http://www.jos.org.cn/1000-9825/4604.htm[doi:10.13328/j.cnki.jos.004604]
    [39] 林伟伟,刘波,朱良昌,齐德昱.基于CSP的能耗高效云计算资源调度模型与算法.通信学报,2013,34(12):33-41.[doi:10.3969/j. issn.1000-436x.2013.12.004]
    [44] 汪俭华,冯锡炜,冯瑶,朱睿.云计算仿真平台的改进研究.科学技术与工程,2013,13(19):5543-5549.[doi:10.3969/j.issn.1671-1815. 2013.19.022]
    [47] 程春玲,潘钰,张登银.云环境下一种节能的资源调度算法.系统工程与电子技术,2013,35(11):2416-2423.
    [52] 邓维,刘方明,金海,李丹.云计算数据中心的新能源应用:研究现状与趋势.计算机学报,2013,36(3):582-598.[doi:10.3724/SP.J.1016.2013.00582]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

林伟伟,吴文泰.面向云计算环境的能耗测量和管理方法.软件学报,2016,27(4):1026-1041

Copy
Share
Article Metrics
  • Abstract:6759
  • PDF: 9167
  • HTML: 4118
  • Cited by: 0
History
  • Received:September 29,2014
  • Revised:July 31,2015
  • Online: January 07,2016
You are the first2035270Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063