Secure Set Computing in Cloud Environment
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61272435, 61373020)

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • |
  • Cited by [2]
  • | |
  • Comments
    Abstract:

    Secure multiparty computation (SMC) is a key technology of cyberspace security and privacy preservation, and it is vital to provide secure cloud computing with SMC based on homomorphic encryption schemes. Secure set computing, which has extensive applications, is a fundamental problem in SMC. Existing solutions to secure set computing are mainly constructed between two parties, but less presented on multi-parties. Those schemes are inefficient, and are hardly adequate to cloud computing. This study proposes a new coding scheme and incorporates homomorphic encryption algorithm to construct a protocol for secure set union computing in cloud environment. The proposed scheme is universal and secure against the collusion of participants. The homomorphic encryption adopted can be either additive or multiplicative. The paper also proposes an efficient secure set union computing scheme, incorporating the G?del numbering and ElGamal public key encryption. The proposed schemes can be used to sort multiple sets, and are proved to be secure in the semi-honest model. In addition, with few modifications, the protocol can also securely compute the intersection of multiple sets.

    Reference
    [1] Feng DG, Zhang M, Zhang Y, Xu Z. Study on cloud computing security. Ruan Jian Xue Bao/Journal of Software, 2011,22(1): 71-83 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3958.htm [doi: 10.3724/SP.J.1001.2011. 03958]
    [2] Yao AC. Protocols for secure computations. In: Shamir A, ed. Proc. of the 23rd IEEE Symp. on Foundations of Computer Science. Piscataway: IEEE Press, 1982. 160-164. [doi: 10.1109/SFCS.1982.38]
    [3] Goldreich O, Micali S, Wigderson A. How to play any mental game. In: Aho AV, ed. Proc. of the 19th Annual ACM Conf. on Theory of Computing. Piscataway: IEEE Press, 1987. 218-229. [doi: 10.1145/28395.28420]
    [4] Goldreich O. Foundations of Cryptography: Volume 2, Basic Applications. London: Cambridge University Press, 2004.
    [5] Ioannidis I, Grama A. An efficient protocol for Yao's millionaires' problem. In: Kauffman RJ, ed. Proc. of the 36th Hawaii Int'l Conf. on System Science. Piscataway: IEEE Press, 2003. 1-6. [doi: 10.1109/HICSS.2003.1174464]
    [6] Li SD, Wang DS. Efficient secure multiparty computation based on homomorphic encryption. Dian Zi Xue Bao/Chinese Journal of Electronics, 2013,41(4):798-803 (in Chinese with English abstract). [doi: 10.3969/j.issn.0372-2112.2013.04.029]
    [7] Li SD, Wu CY, Wang DS, Dai YQ. Secure multiparty computation of solid geometric problems and their applications. Information Sciences, 2014,282:401-413. [doi: 10.1016/j.ins.2014.04.004]
    [8] Fagin R, Naor M, Winklery P. Comparing information without leaking it. Communications of the ACM, 1996,39(5):77-85. [doi: 10.1145/229459.229469]
    [9] Du WL, Atallah MJ. Privacy-Preserving cooperative statistical analysis. In: Proc. of the 17th Annual Conf. of Computer Security Applications. Piscataway: IEEE Press, 2001. 102-110. [doi: 10.1109/ACSAC.2001.991526]
    [10] Du WL, Atallah MJ. Protocols for secure remote database access with approximate matching. In: Ghosh AK, ed. Proc. of the Advance of E-Commerce and Privacy. New York: Springer-Verlag, 2001. 87-111. [doi: 10.1007/978-1-4615-1467-1_6]
    [11] Cachin C. Efficient private bidding and auctions with a noblivious third party. In: Motiwalla J, ed. Proc. of the 6th ACM Conf. on Computer and Communications Security. New York: ACM Press, 1999. 120-127. [doi: 10.1145/319709.319726]
    [12] Koh HC, Tan G. Data mining applications in healthcare. Journal of Healthcare Information Management, 2011,19(2):64-72.
    [13] Freedman MJ, Nissim K, Pinkas B. Efficient private matching and set intersection. In: Cachin C, Camenisch JL, eds. Proc. of the Advances in Cryptology (EUROCRYPT 2004). Berlin, Heidelberg: Springer-Verlag, 2004. 1-19. [doi: 10.1007/978-3-540-24676- 3_1]
    [14] Hazay C, Lindell Y. Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. Journal of Cryptology, 2010,23(3):422-456. [doi: 10.1007/s00145-008-9034-x]
    [15] Fischlin M, Pinkas B, Sadeghi AR, Schneider T, Visconti I. Secure set intersection with untrusted hardware tokens. In: Kiayias A, ed. Proc. of the 11th Int'l Conf. on Topics in Cryptology (CT-RSA 2011). Berlin, Heidelberg: Springer-Verlag, 2011. 1-16. [doi: 10.1007/978-3-642-1907 4-2_1]
    [16] Shi R, Mu Y, Zhong H, Cui J, Zhang S. An efficient quantum scheme for private set intersection. Quantum Information Processing, 2016,15(1):363-371. [doi: 10.1007/s11128-015-1165-z]
    [17] Kissner L, Song D. Privacy-Preserving set operations. In: Shoup V, ed. Proc. of the 25th Annual Int'l Conf. on Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag, 2005. 241-257. [doi: 10.1007/11535218_15]
    [18] Frikken K. Privacy-Preserving set union. In: Katz J, Yung M, eds. Proc. of the 5th Int'l Conf. on Applied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag, 2007. 237-252. [doi: 10.1007/978-3-540-72738-5_16]
    [19] Blanton M, Aguiar E. Private and oblivious set and multiset operations. In: Youm HY, Kisa YW, eds. Proc. of the 7th ACM Symp. on Information, Computer and Communications Security. New York: ACM Press, 2012. 40-41. [doi: 10.1145/2414456.2414479]
    [20] Seo J, Cheon J, Katz J. Constant-Round multi-party private set union using reversed laurent series. In: Fischlin M, ed. Proc. of the 15th Int'l Conf. on Practice and Theory in Public Key Cryptography (PKC 2012). Berlin, Heidelberg: Springer-Verlag, 2012. 398-412. [doi: 10.1007/978-3-642-30057-8_24]
    [21] Chun JY, Hong D, Jeong IR, Lee DH. Privacy-Preserving disjunctive normal form operations on distributed sets. Information Sciences, 2013,231:113-122. [doi: 10.1016/j.ins.2011.07.003]
    [22] Tillmanns J. Privately computing set-union and set-intersection cardinality via bloom filters. In: Foo E, Stebila D, eds. Proc. of the 20th Australasian Conf. on Information Security and Privacy (ACISP 2015), Vol.9144. Berlin, Heidelberg: Springer-Verlag, 2015. 413-430. [doi: 10.1007/978-3-319-19962-724]
    [23] De Cristofaro E, Gasti P, Tsudik G. Fast and private computation of cardinality of set intersection and union. In: Pieprzyk J, ed. Proc. of the Cryptology and Network Security. Berlin, Heidelberg: Springer-Verlag, 2012. 7712: 218-231. [doi: 10.1007/978-3- 642-35404-5_17]
    [24] Wang G, Luo T, Goodrich MT, Du W, Zhu Z. Bureaucratic protocols for secure two-party sorting, selection, and permuting. In: Feng D, ed. Proc. of the 5th ACM Symp. on Information, Computer and Communications Security. New York: ACM Press, 2010. 226-237. [doi: 10.1145/1755688.1755716]
    [25] Bellare M, Hoang VT, Rogaway P. Foundations of garbled circuits. In: Yu T, ed. Proc. of the 2012 ACM Conf. on Computer and Communications Security. New York: ACM Press, 2012. 784-796. [doi: 10.1145/2382196.2382279]
    [26] Maheshwari N, Kiyawat K. Structural framing of protocol for secure multiparty cloud computation. In: Proc. of the 2011 5th Asia Modelling Symp. Piscataway: IEEE Press, 2011. 187-192. [doi: 10.1109/AMS.2011.42]
    [27] Paillier P. Public-Key cryptosystems based on composite degree residuosity classes. In: Stern J, ed. Proc. of the Advances in Cryptology—EUROC (RYPT'99). Berlin, Heidelberg: Springer-Verlag, 1999. 223-238. [doi: 10.1007/3-540-48910-X_16]
    附中文参考文献:
    [1] 冯登国,张敏,张妍,徐震.云计算安全研究.软件学报,2011,22(1):71-83. http://www.jos.org.cn/1000-9825/3958.htm [doi: 10.3724/ SP.J.1001.2011.03958]
    [6] 李顺东,王道顺.基于同态加密的高效多方保密计算.电子学报,2013,42(4):798-803. [doi: 10.3969/j.issn.0372-2112.2013.04.029]
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李顺东,周素芳,郭奕旻,窦家维,王道顺.云环境下集合隐私计算.软件学报,2016,27(6):1549-1565

Copy
Share
Article Metrics
  • Abstract:5711
  • PDF: 7590
  • HTML: 2998
  • Cited by: 0
History
  • Received:August 14,2015
  • Revised:October 09,2015
  • Online: January 22,2016
You are the first2049898Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063