Modeling Urban Traffic Control Systems from the Perspective of Real Time Calculus
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61300022, 61300194, 61472072); National Grand Fundamental Research Program of China (973) (2014CB360509); Fundamental Research Funds for the Central Universities (N130423007); the Natural Science Foundation for Young Scholars of Hebei Province of China (F2013501048)

  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This work presents a new framework for urban traffic flow control based on the real time calculus(RTC) method.The queuing behavior of the traffic flow is transformed into an arrival curve, and the capacity of the intersection is characterized by a service curve.According to different signal control strategies, the service and arrival curves at an intersection are used to calculate the outgoing arrival curve.This result curve at each intersection is further integrated with the curves at the adjacent intersections, which finally exhibits the RTC model of the whole traffic network.The presented model can evaluate the bounds of the delay D of a vehicle and the backlog B of an intersection.The experiments are settled on the urban girds, and reveal the changing trend of the congestion factors D and B that are under fixed-time and adapted control strategies respectively.This is followed by a discussion of how this modeling method helps to estimate the effect of different signal control strategies.

    Reference
    [1] Li SB, Wu JJ, Gao ZY, Lin Y, Fu BB. The analysis of traffic congestion and dynamic propagation properties based on complex network. Acta Physica Sinica, 2011,60(5):050701(in Chinese with English abstract).[doi:10.7498/aps.63.010508]
    [2] Jűlvez J, Boel RK. A continuous Petri net approach for model predictive control of traffic systems. IEEE Trans. on Systems, Man and Cybernetics, Part A:Systems and Humans, 2010,40(4):686-697.[doi:10.1109/TSMCA.2010.2041448]
    [3] Kim YW, Kato T, Okuma S, Narikiyo T. Traffic network control based on hybrid dynamical system modeling and mixed integer nonlinear programming with convexity analysis. IEEE Trans. on Systems, Man and Cybernetics, Part A:Systems and Humans, 2008,38(2):346-357.[doi:10.1109/TSMCA.2007.914779]
    [4] Schadschneider A, Schreckenberg M. Cellular automation models and traffic flow. Journal of Physics A:Mathematical and General, 1993,26(15):679-683.[doi:10.1088/0305-4470/26/15/011]
    [5] Foulaadvand ME, Belbasi S. Vehicular traffic flow at an intersection with the possibility of turning. Journal of Physics A:Mathematical and Theoretical, 2011,44(10):105001.[doi:10.1088/1751-8113/44/10/105001]
    [6] Hu WB, Wang H, Du B, Li PY. A multi-intersection model and signal timing plan algorithm for urban traffic signal control. In:Proc. of the Transport. 2014. 1-11.[doi:10.3846/16484142.2014.940606]
    [7] Jing M, Deng W, Wang H, Ji YJ. Two-Lane cellular automaton traffic model based on car following behavior. Acta Physica Sinica, 2012,61(24):323-331(in Chinese with English abstract).[doi:10.7498/aps.61.244502]
    [8] Zhao HT, Mao HY. Cellular automaton simulation of muti-lane traffic flow including emergency vehicle. Acta Physica Sinica, 2013, 62(6):060501(in Chinese with English abstract).[doi:10.7498/aps.62.060501]
    [9] Zhang XQ, Wang Y, Hu QH. Research and simulation on cellular automaton model of mixed traffic flow at intersection. Acta Physica Sinica, 2014,63(1):010508(in Chinese with English abstract).[doi:10.7498/aps.63.010508]
    [10] Gallego JL, Farges JL, Henry JJ. Design by Petri nets of an intersection signal controller. Transportation Research Part C:Emerging Technologies, 1996,4(4):231-248.[doi:10.1016/S0968-090X(96)00009-5]
    [11] Tzes A, Kim S, McShane WR. Applications of Petri networks to transportation network modeling. IEEE Trans. on Vehicular Technology, 1996,45(2):391-400.[doi:10.1109/25.492914]
    [12] Dotoli M, Fanti MP. An urban traffic network model via coloured timed Petri nets. Control Engineering Practice, 2006,14(10):1213-1229.[doi:10.1016/j.conengprac.2006.02.005]
    [13] Di Febbraro A, Giglio D, Sacco N. Urban traffic control structure based on hybrid Petri nets. IEEE Trans. on Intelligent Transportation Systems, 2004,5(4):224-237.[doi:10.1109/TITS.2004.838180]
    [14] List GF, Cetin M. Modeling traffic signal control using Petri nets. IEEE Trans. on Intelligent Transportation Systems, 2004,5(3):177-187.[doi:10.1109/TITS.2004.833763]
    [15] Huang YS, Weng YS, Zhou MC. Modular design of urban traffic-light control systems based on synchronized timed Petri nets. IEEE Trans. on Intelligent Transportation Systems, 2014,15(2):530-539.[doi:10.1109/TITS.2013.2283034]
    [16] Lin L, Jiang CJ. Modeling and analysis of TIS based on GSPN. Chinese Journal of Computers, 2005,28(1):81-87(in Chinese with English abstract).[doi:10.3321/j.issn:0254-4164.2005.01.011]
    [17] Chakraborty S, Künzli S, Thiele L. A general framework for analysing system properties in platform-based embedded system designs. In:Proc. of the Design, Automation and Test in Europe Conf. and Exhibition(DATE). IEEE Computer Society, 2003. 190-195.[doi:10.1109/DATE.2003.1253607]
    [18] Phan LTX, Chakraborty S, Thiagarajan PS. A multi-mode real-time calculus. In:Proc. of the Real-Time Systems Symp. USA:IEEE Computer Society, 2008. 59-69.[doi:10.1109/RTSS.2008.47]
    [19] Guan N, Yi W. Finitary real-time calculus:Efficient performance analysis of distributed embedded systems. In:Proc. of the Real-Time Systems Symp. IEEE Computer Society, 2013. 330-339.[doi:10.1109/RTSS.2013.40]
    [20] Ka A, Mok L. Fundamental design problems of distributed systems for the hard-real-time environment[Ph.D.Thesis]. Massachusetts:Massachusetts Institute of Technology, 1983.
    [21] Killat U. Entwurf und Analyse von Kommunikationsnetzen. Vieweg+ Teubner, 2011. 178-179.
    [22] Liu ZY. Intelligent Traffic Control Theory and Its Application. Beijing:Science Press, 2003. 51-106(in Chinese).
    [23] Xu Y, Zhang YL, Sun TT, Su YF. Agent-Based decentralized cooperative traffic control toward green-waved effects. Ruan Jian Xue Bao/Journal of Software, 2012,23(11):2937-2945(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/2937.htm[doi:10.3724/SP.J.1001.2012.04307]
    [24] Perathoner S, Rein T, Thiele L, Lampka K, Rox J. Modeling structured event streams in system level performance analysis. In:Proc. of the ACM SIGPLAN/SIGBED Conf. on Languages, Compilers and Tools for Embedded Systems(LCTES). ACM Press, 2010. 37-46.[doi:10.1145/1755888.1755895]
    [25] Stoimenov N, Perathoner S, Thiele L. Reliable mode changes in real-time systems with fixed priority or EDF scheduling. In:Proc. of the Design, Automation & Test in Europe Conf. & Exhibition. IEEE, 2009. 99-104.[doi:10.1109/DATE.2009.5090640]
    [26] Baruah S, Chen D, Gorinsky S, Mork A. Generalized multiframe tasks. Real-Time Systems, 1999,17(1):5-22.[doi:10.1023/A:1008030427220]
    [27] Ernesto W, Lothar T. Real-Time calculus(RTC) toolbox. http://www.mpa.ethz.ch/Rtctoolbox
    [28] Chen YX, Wu B. Approaching several subjects of dynamic optimization for one-way system. Urban Roads Bridges and Flood Control, 2007,4(4):94-96(in Chinese with English abstract).[doi:10.3969/j.issn.1009-7716.2007.04.029]
    [29] Chen XH, Ye PY. Impact of proportion of left turn flow at signalized intersections on urban road network efficiency. Journal of Tongji University, 2008,8:1067-1072(in Chinese with English abstract).[doi:10.3321/j.issn:0253-374X.2008.08.011]
    [30] Tan GZ, Sun JH, Wang BC, Yao WH. Solving Chinese postman problem on time varying network with timed automata. Ruan Jian Xue Bao/Journal of Software, 2011,22(6):1267-1280(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4033. htm[doi:10.3724/SP.J.1001.2011.04033]
    附中文参考文献:
    [1] 李树彬,吴建军,高自友,林勇,傅白白.基于复杂网络的交通拥堵与传播动力学分析.物理学报,2011,60(5):050701.[doi:10.7498/aps.63.010508]
    [7] 敬明,邓卫,王昊,季彦婕.基于跟车行为的双车道交通流元胞自动机模型.物理学报,2012,61(24):323-331.[doi:10.7498/aps.61. 244502]
    [8] 赵韩涛,毛宏燕.有应急车辆影响的多车道交通流元胞自动机模型.物理学报,2013,62(6):060501.[doi:10.7498/aps.62.060501]
    [9] 张兴强,汪滢,胡庆华.交叉口混合交通流元胞自动机模型及仿真研究.物理学报,2014,63(1):010508.[doi:10.7498/aps.63.010508]
    [16] 林琳,蒋昌俊.基于广义随机Petri网的交通信息系统建模与分析.计算机学报,2005,28(1):81-87.[doi:10.3321/j.issn:0254-4164. 2005.01.011]
    [22] 刘智勇.智能交通控制理论及其应用.北京:科学出版社,2003.51-106.
    [23] 徐杨,张玉林,孙婷婷,苏艳芳.基于多智能体交通绿波效应分布式协同控制算法.软件学报,2012,23(11):2937-2945. http://www. jos.org.cn/1000-9825/2937.htm[doi:10.3724/SP.J.1001.2012.04307]
    [28] 陈颖雪,吴兵.单行道系统动态优化的若干问题探讨.城市道桥与防洪,2007,4(4):94-96.[doi:10.3969/j.issn.1009-7716.2007. 04.029]
    [29] 陈小鸿,叶彭姚.交叉口左转车流比例对路网运行效率的影响.同济大学学报(自然科学版),2008,8:1067-1072.[doi:10.3321/j.issn:0253-374X.2008.08.011]
    [30] 谭国真,孙景昊,王宝财,姚卫红.时变网络中国邮路问题的时间自动机模型.软件学报,2011,22(6):1267-1280. http://www.jos.org. cn/1000-9825/4033.htm[doi:10.3724/SP.J.1001.2011.04033]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙景昊,关楠,邓庆绪,张鑫,杨丰源.城市交通网络信号控制系统的实时演算模型.软件学报,2016,27(3):527-546

Copy
Share
Article Metrics
  • Abstract:5028
  • PDF: 7243
  • HTML: 2619
  • Cited by: 0
History
  • Received:July 13,2015
  • Revised:October 20,2015
  • Online: January 06,2016
You are the first2041556Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063