Solving SaaS Components Optimization Placement Problem with Hybird Genetic and Simulated Annealing Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

National Key R&D Plan Project of China (2014BAF07B02); National Natural Science Foundation of China (61432002); Major Scienece & Technology Specific Project of Shandong Province (2015ZDXX0201B02); Natural Science Foundation of Shandong Province (2015ZRA10032)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Current researches on SaaS(software as a service) optimization placement mostly assume that the types and number of virtual machines are constant in cloud environment, namely, the optimization placement is based on the restricted resource. However, in actual situation the types and number of virtual machines are unknown, and they need to been calculated according to the resource requirement of components deployed. To address the issue, from the view of SaaS providers, this paper proposes a new approach to SaaS optimization placement problem that not only is applied to initial deployment of SaaS, but also is applied to component dynamic deployment in the running phase of SaaS. A hybrid genetic and simulated annealing algorithm(HGSA) is used in this approach that combines the advantages of genetic algorithm and simulated annealing algorithm, and overcomes the problems of the premature of genetic algorithm and the lower convergence speed. Compared with the separated using of genetic algorithm and simulated annealing algorithm, the experimental results show that HGSA has higher quality in solving the problem of SaaS component optimization placements. The approach proposed in this paper will provide the support of theory and method for the large-scale application of SaaS service mode.

    Reference
    Related
    Cited by
Get Citation

孟凡超,初佃辉,李克秋,周学权.基于混合遗传模拟退火算法的SaaS构件优化放置.软件学报,2016,27(4):916-932

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2015
  • Revised:October 15,2015
  • Adopted:
  • Online: January 14,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063