Survey on Learning-to-Rank Based Recommendation Algorithms
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61272268, 61103069); National Grand Fundamental Research Program of China (973) (2014CB340404); Program for New Century Excellent Talents in University (NCET-12-0413); Fok Ying Tung Education Foundation (142002); Shanghai Rising-Star Program (15QA1403900)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Learning to rank(L2R) techniques try to solve sorting problems using machine learning methods, and have been well studied and widely used in various fields such as information retrieval, text mining, personalized recommendation, and biomedicine.The main task of L2R based recommendation algorithms is integrating L2R techniques into recommendation algorithms, and studying how to organize a large number of users and features of items, build more suitable user models according to user preferences requirements, and improve the performance and user satisfaction of recommendation algorithms.This paper surveys L2R based recommendation algorithms in recent years, summarizes the problem definition, compares key technologies and analyzes evaluation metrics and their applications.In addition, the paper discusses the future development trend of L2R based recommendation algorithms.

    Reference
    Related
    Cited by
Get Citation

黄震华,张佳雯,田春岐,孙圣力,向阳.基于排序学习的推荐算法研究综述.软件学报,2016,27(3):691-713

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 12,2015
  • Revised:May 14,2015
  • Adopted:December 02,2015
  • Online: December 30,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063