Hybrid Quantum Swarm Intelligence Indexing for Event Detection in Social Networks
Author:
Affiliation:

Clc Number:

Fund Project:

National Program on Key Basic Research Project of China (973) (2012CB719905); National Natural Science Foundation of China (61572369, 61471274); National Natural Science Foundation of Hubei Province (2015CFB423); Wuhan Major Science and Technology Program (2015010101010023)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In complicated social networks, discovering or predicting important events is significant. The theoretical framework and evaluation methods of link prediction offer an effective solution for detecting events in social networks. Most of the current research focuses on proposing different similarity indexes to achieve higherlink prediction accuracy. However this type of approach has following problems:(1) Because different similarity indexes are designed for different networks, they are not universal; (2) The independent similarity index is difficult to reflect diversity and complexity of real network evolutions; (3) Without considering the fluctuation in the network evolution, the link prediction cannot detect events. To solve these problems, this paper proposes a swarm intelligence method based on mixed indexes (IndexEvent), which can evaluate fluctuations and detect events in social networks. The main work is as follow:(1) A proof is provided on the proposed mixed indexes that the link prediction algorithm based on mixed indexes can achieve a higher accuracy; (2) Based on the quantum-behaved particle swarm algorithm, an optimal weight algorithm (OWA) is developed to determine best mixed indexes for different networks efficiently; (3) A fluctuation detection algorithm (FDA) is designed to quantitatively estimates fluctuations in network evolutions at different periods. And micro factors are taken into account to improve FDA. The results of the experiments show that IndexEvent can effectively reflect evolution fluctuations and detect events.

    Reference
    Related
    Cited by
Get Citation

胡文斌,王欢,严丽平,邱振宇,肖雷,杜博.混合指标量子群智能社会网络事件检测方法.软件学报,2016,27(11):2747-2762

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 03,2015
  • Revised:August 11,2015
  • Adopted:
  • Online: November 02,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063