Computational Intelligence for Big Data Analysis: Current Status and Future Prospect
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [116]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Big data and its real-world applications have attracted a lot of attention with the explosive growth of data volumes not only in the academic but also in industrial. Big data analysis aimed at mining the potential value of big data has become a popular research topic. Computational intelligence (CI) which is an important research direction of artificial intelligence and information science has been shown to be promising to solve complex problems in scientific research and engineering. CI techniques are expected to provide powerful tools for addressing challenges in big data analytics. This paper surveys the related CI techniques, analyzes the grand challenges brought forth by big data from big data analysis perspectives, and discusses the possible research directions in the future of the big data era. Further, it proposes to conduct the research of big data analysis on scientific big data such as astronomy big data.

    Reference
    [1] Jagadish H, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R, Shahabi C. Big data and its technical challenges. Communications of the ACM, 2014,57(7):86-94.[doi:10.1145/2611567]
    [2] Guo P. Computational Intelligence for Software Reliability Engineering. Beijing:Science Press, 2012. 14-19, 234-254 (in Chinese).
    [3] Jin Y, Hammer B. Computational intelligence in big data. IEEE Computational Intelligence Magazine, 2014,9(3):12-13.[doi:10. 1109/MCI.2014.2326098]
    [4] Li GJ, Cheng XQ. Research status and scientific thinking of big data. Bulletin of Chinese Academy of Sciences, 2012,27(6):647-657 (in Chinese with English abstract).[doi:10.3969/j.issn.1000-3045.2012.06.001]
    [5] Chen CLP, Zhang CY. Data-Intensive applications, challenges, techniques and technologies:A survey on big data. Information Sciences, 2014,275:314-347.[doi:doi:10.1016/j.ins.2014.01.015]
    [6] Mayer-Schönberger V, Cukier K. Big Data:A Revolution That Will Transform How We Live, Work, and Think. New York:Houghton Mifflin Harcourt, 2013. 2-23.
    [7] Zikopoulos P, Eaton C. Understanding Big Data:Analytics for Enterprise Class Hadoop and Streaming Data. New York:McGraw-Hill Osborne Media, 2011. 5-9.
    [8] Pei J. Some new progress in analyzing and mining uncertain and probabilistic data for big data analytics. In:Proc. of the 14th Int'l Conf. on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Berlin:Springer-Verlag, 2013. 38-45.[doi:10.1007/978-3-642-41218-9_5]
    [9] Freund Y, Schapire RE. Large margin classification using the perceptron algorithm. Machine Learning, 1999,37(3):277-296.[doi:10.1023/A:1007662407062]
    [10] Aston N, Liddle J, Hu W. Twitter sentiment in data streams with perceptron. Journal of Computer and Communications, 2014, 2(3):11-16.[doi:10.4236/jcc.2014.23002]
    [11] Collins M. Discriminative training methods for hidden markov models:Theory and experiments with perceptron algorithms. In:Proc. of the ACL-02 Conf. on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2002. 1-8.[doi:10.3115/1118693.1118694]
    [12] Littlestone N, Warmuth MK. The weighted majority algorithm. Information and Computation, 1994,108(2):212-261.[doi:10. 1006/inco.1994.1009]
    [13] Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. The Journal of Machine Learning Research, 2006,7:551-585.
    [14] Blondel M, Kubo Y, Ueda N. Online passive-aggressive algorithms for non-negative matrix factorization and completion. In:Proc. of the 17th Int'l Conf. on Artificial Intelligence and Statistics. Reykjavik:JMLR, 2014. 96-104.
    [15] Crammer K, Lee DD. Learning via gaussian herding. In:Proc. of the 24th Annual Conf. on Neural Information Processing Systems. Vancouver:Curran Associates, Inc., 2010. 451-459.
    [16] Dredze M, Crammer K, Pereira F. Confidence-Weighted linear classification. In:Proc. of the 25th Int'l Conf. on Machine Learning. Helsinki:ACM Press, 2008. 264-271.[doi:10.1145/1390156.1390190]
    [17] Wang J, Zhao P, Hoi SCH. Exact soft confidence-weighted learning. In:Proc. of the 29th Int'l Conf. on Machine Learning. Edinburgh:Omnipress, 2012. 121-128.
    [18] Orabona F, Crammer K. New adaptive algorithms for online classification. In:Proc. of the 24th Annual Conf. on Neural Information Processing Systems. Vancouver:Curran Associates, Inc., 2010. 1840-1848.
    [19] Dekel O, Shalev-Shwartz S, Singer Y. The forgetron:A kernel-based perceptron on a budget. SIAM Journal on Computing, 2008, 37(5):1342-1372.[doi:10.1137/060666998]
    [20] Sengamedu SH. Scalable analytics-algorithms and systems. In:Proc. of the 1st Int'l Conf. on Big Data Analytics. New Delhi:Springer-Verlag, 2012. 1-7.[doi:10.1007/978-3-642-35542-4_1]
    [21] Castellano G, Fanelli AM. Variable selection using neural-network models. Neurocomputing, 2000,31(1):1-13.[doi:10.1016/S0925-2312(99)00146-0]
    [22] Rasti J, Monadjemi A, Vafaei A. Color reduction using a multi-stage Kohonen self-organizing map with redundant features. Expert Systems with Applications, 2011,38(10):13188-13197.[doi:10.1016/j.eswa.2011.04.132]
    [23] Sagheer A, Tsuruta N, Taniguchi RI, Arita D, Maeda S. Fast feature extraction approach for multi-dimension feature space problems. In:Proc. of the 18th Int'l Conf. on Pattern Recognition. Hong Kong:IEEE, 2006. 417-420.[doi:10.1109/ICPR.2006. 545]
    [24] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006,313(5786):504-507.[doi:10.1126/science.1127647]
    [25] Le QV, Ranzato MA, Monga R, Devin M, Chen K, Corrado GS, Dean Jeff, Ng AY. Building high-level features using large scale unsupervised learning. In:Proc. of the 29th Int'l Conf. on Machine Learning. Edinburgh:ICML, 2012. 81-88.
    [26] Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009,2(1):1-127.[doi:10.1561/22 00000006]
    [27] Zhou ZH, Chawla NV, Jin Y, Williams GJ. Big ata opportunities and challenges:Discussions from data analytics perspectives. IEEE Computational Intelligence Magazine, 2014,9(4):62-74.[doi:10.1109/MCI.2014.2350953]
    [28] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In:Proc. of the Advances In Neural Information Processing Systems. Lake Tahoe:Curran Associates, Inc., 2012. 1097-1105.
    [29] Dahl GE, Yu D, Deng L, Acero A. Context-Dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. on Audio, Speech, and Language Processing, 2012,20(1):30-42.[doi:10.1109/TASL.2011.2134090]
    [30] Socher R, Lin CC, Ng AY, Manning CD. Parsing natural scenes and natural language with recursive neural networks. In:Proc. of the 28th Int'l Conf. on Machine Learning. Bellevue:Omnipress, 2011. 129-136.
    [31] Yu K, Jia L, Chen Y, Xu W. Deep learning:Yesterday, today, and tomorrow. Journal of Computer Research and Development, 2013,50(9):1799-1804 (in Chinese with English abstract).
    [32] Havens TC, Bezdek JC, Leckie C, Hall LO, Palaniswami M. Fuzzy c-means algorithms for very large data. IEEE Trans. on Fuzzy Systems, 2012,20(6):1130-1146.[doi:10.1109/TFUZZ.2012.2201485]
    [33] Hore P, Hall L, Goldgof D, Cheng W. Online fuzzy c means. In:Proc. of the 2008 North American Fuzzy Information Processing Society Conf. New York:IEEE, 2008. 1-5.[doi:10.1109/NAFIPS.2008.4531233]
    [34] Ene A, Im S, Moseley B. Fast clustering using MapReduce. In:Proc. of the 17th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Diego:ACM Press, 2011. 681-689.[doi:10.1145/2020408.2020515]
    [35] Wang Y, Chen L, Mei JP. Stochastic gradient descent based fuzzy clustering for large data. In:Proc. of the 2014 IEEE Int'l Conf. on Fuzzy Systems. Beijing:IEEE, 2014. 2511-2518.[doi:10.1109/FUZZ-IEEE.2014.6891755]
    [36] Yang X, Zhang G, Lu J, Ma J. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises. IEEE Trans. on Fuzzy Systems, 2011,19(1):105-115.[doi:10.1109/TFUZZ.2010.2087382]
    [37] Hore P, Hall LO, Goldgof DB. Single pass fuzzy c means. In:Proc. of the 2007 IEEE Int'l Conf. on Fuzzy Systems. London:IEEE, 2007. 1-7.[doi:10.1109/FUZZY.2007.4295372]
    [38] Eschrich S, Ke J, Hall LO, Goldgof DB. Fast accurate fuzzy clustering through data reduction. IEEE Trans. on Fuzzy Systems, 2003,11(2):262-270.[doi:10.1109/TFUZZ.2003.809902]
    [39] Hore P, Hall LO, Goldgof DB, Gu Y, Maudsley AA, Darkazanli A. A scalable framework for segmenting magnetic resonance images. Journal of Signal Processing Systems, 2009,54(1-3):183-203.[doi:10.1007/s11265-008-0243-1]
    [40] Krishnan S, Bhattacharyya C, Hariharan R. A randomized algorithm for large scale support vector learning. In:Proc. of the 21st Annual Conf. on Neural Information Processing Systems. Vancouver:Curran Associates, Inc., 2007. 793-800.
    [41] Mangalampalli A, Pudi V. FAR-HD:A fast and efficient algorithm for mining fuzzy association rules in large high-dimensional datasets. In:Proc. of the 2013 IEEE Int'l Conf. on Fuzzy Systems. Hyderabad:IEEE, 2013. 1-6.[doi:10.1109/FUZZ-IEEE.2013. 6622333]
    [42] Alcala-Fdez J, Alcala R, Herrera F. A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. on Fuzzy Systems, 2011,19(5):857-872.[doi:10.1109/TFUZZ.2011.21477 94]
    [43] Holland JH. Outline for a logical theory of adaptive systems. Journal of the ACM, 1962,9(3):297-314.[doi:10.1145/321127.3211 28]
    [44] Bacardit J, Llorà X. Large-Scale data mining using genetics-based machine learning. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2013,3(1):37-61.[doi:10.1002/widm.1078]
    [45] Antonelli M, Ducange P, Marcelloni F. Genetic training instance selection in multiobjective evolutionary fuzzy systems:A coevolutionary approach. IEEE Trans. on Fuzzy Systems, 2012,20(2):276-290.[doi:10.1109/TFUZZ.2011.2173582]
    [46] Oh IS, Lee JS, Moon BR. Hybrid genetic algorithms for feature selection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(11):1424-1437.[doi:10.1109/TPAMI.2004.105]
    [47] Tsai CF, Eberle W, Chu CY. Genetic algorithms in feature and instance selection. Knowledge-Based Systems, 2013,39:240-247.[doi:10.1016/j.knosys.2012.11.005]
    [48] Gheyas IA, Smith LS. Feature subset selection in large dimensionality domains. Pattern Recognition, 2010,43(1):5-13.[doi:10. 1016/j.patcog.2009.06.009]
    [49] Aggarwal CC, Yu PS. An effective and efficient algorithm for high-dimensional outlier detection. The VLDB Journal, 2005,14(2):211-221.[doi:10.1007/s00778-004-0125-5]
    [50] Valle YD, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG. Particle swarm optimization:basic concepts, variants and applications in power systems. IEEE Trans. on Evolutionary Computation, 2008,12(2):171-195.[doi:10.1109/TEVC. 2007.896686]
    [51] Gong M, Cai Q, Chen X, Ma L. Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. on Evolutionary Computation, 2014,18(1):82-97.[doi:10.1109/TEVC.2013.2260862]
    [52] Li X, Yao X. Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. on Evolutionary Computation, 2012,16(2):210-224.[doi:10.1109/TEVC.2011.2112662]
    [53] Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution. Information Sciences, 2008, 178 (15):2985-2999.[doi:10.1016/j.ins.2008.02.017]
    [54] Omidvar MN, Li X, Mei Y, Yao X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. on Evolutionary Computation, 2014,18(3):378-393.[doi:10.1109/TEVC.2013.2281543]
    [55] Chen Y, Miao D, Wang R. A rough set approach to feature selection based on ant colony optimization. Pattern Recognition Letters, 2010,31(3):226-233.[doi:10.1016/j.patrec.2009.10.013]
    [56] Aghdam MH, Ghasem-Aghaee N, Basiri ME. Text feature selection using ant colony optimization. Expert systems with applications, 2009,36(3):6843-6853.[doi:10.1016/j.eswa.2008.08.022]
    [57] Al-Ani A. Feature subset selection using ant colony optimization. Int'l Journal of Computational Intelligence, 2006,2(1):53-58.
    [58] Wang X, Yang J, Teng X, Xia W, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 2007,28(4):459-471.[doi:10.1016/j.patrec.2006.09.003]
    [59] Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S. An improved particle swarm optimization for feature selection. Journal of Bionic Engineering, 2011,8(2):191-200.[doi:10.1016/S1672-6529(11)60020-6]
    [60] Ke L, Feng Z, Ren Z. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters, 2008,29(9):1351-1357.[doi:10.1016/j.patrec.2008.02.006]
    [61] Jones DF, Mirrazavi SK, Tamiz M. Multi-Objective meta-heuristics:An overview of the current state-of-the-art. European Journal of Operational Research, 2002,137(1):1-9.[doi:10.1016/S0377-2217(01)00123-0]
    [62] Konak A, Coit DW, Smith AE. Multi-Objective optimization using genetic algorithms:A tutorial. Reliability Engineering & System Safety, 2006,91(9):992-1007.[doi:10.1016/j.ress.2005.11.018]
    [63] Gong MG, Jiao LC, Yang DD, Ma WP. Research on evolutionary multi-objective optimization algorithms. Ruan Jian Xue Bao/Journal of Software, 2009,20(2):271-289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3483.htm[doi:10.3724/SP.J.1001.2009.03483]
    [64] Coello CAC. Evolutionary multi-objective optimization:A historical view of the field. IEEE Computational Intelligence Magazine, 2006,1(1):28-36.[doi:10.1109/MCI.2006.1597059]
    [65] Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 2004,26(6):369-395.[doi:10.1007/s00158-003-0368-6]
    [66] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. New York:Wiley, 2001.
    [67] Jin Y, Branke J. Evolutionary optimization in uncertain environments-A survey. IEEE Trans. on Evolutionary Computation, 2005,9(3):303-317.[doi:10.1109/TEVC.2005.846356]
    [68] Alaya I, Solnon C, Ghédira K. Ant colony optimization for multi-objective optimization problems. In:Proc. of the 19th Int'l Conf. on Tools with Artificial Intelligence. Patras:IEEE, 2007. 450-457.[doi:doi:10.1109/ICTAI.2007.108]
    [69] Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 1952,23(3):462-466.[doi:10.1214/aoms/1177729392]
    [70] Bottou L. Large-Scale machine learning with stochastic gradient descent. In:Proc. of the 19th Int'l Conf. on Computational Statistics. Paris:Springer-Verlag, 2010. 177-186.[doi:10.1007/978-3-7908-2604-3_16]
    [71] Roux NL, Schmidt M, Bach FR. A stochastic gradient method with an exponential convergence rate for finite training sets. In:Proc. of the 26th Annual Conf. on Neural Information Processing Systems. Lake Tahoe:Curran Associates, Inc., 2012. 2663-2671.
    [72] Paul S, Boutsidis C, Magdon-Ismail M, Drineas P. Random projections for support vector machines. In:Proc. of the 16th Int'l Conf. on Artificial Intelligence and Statistics. Scottsdale:JMLR, 2013. 498-506.
    [73] Drineas P, Magdon-Ismail M, Mahoney MW, Woodruff DP. Fast approximation of matrix coherence and statistical leverage. The Journal of Machine Learning Research, 2012,13(1):3475-3506.
    [74] Kumar K, Bhattacharya C, Hariharan R. A randomized algorithm for large scale support vector learning. In:Proc. of the 21st Annual Conf. on Neural Information Processing Systems. Vancouver:Curran Associates, Inc., 2007. 793-800.
    [75] Rahimi A, Recht B. Random features for large-scale kernel machines. In:Proc. of the 21st Annual Conf. on Neural Information Processing Systems. Vancouve:Curran Associates, Inc., 2007. 1177-1184.
    [76] Li P, Shrivastava A, Moore JL, König AC. Hashing algorithms for large-scale learning. In:Proc. of the 25th Annual Conf. on Neural Information Processing Systems. Granada:Curran Associates, Inc., 2011. 2672-2680.
    [77] Kulis B, Grauman K. Kernelized locality-sensitive hashing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34 (6):1092-1104.[doi:10.1109/TPAMI.2011.219]
    [78] Mu Y, Wright J, Chang SF. Accelerated large scale optimization by concomitant hashing. In:Proc. of the 12th European Conf. on Computer Vision. Florence:Springer-Verlag, 2012. 414-427.[doi:10.1007/978-3-642-33718-5_30]
    [79] Mu Y, Hua G, Fan W, Chang SF. Hash-SVM:Scalable kernel machines for large-scale visual classification. In:Proc. of the 27th IEEE Conf. on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014. 979-986.[doi:10.1109/CVPR.2014.130]
    [80] Wang K, Guo P. An efficient and scalable learning algorithm for near-earth objects detection in astronomy big image data. In:Proc. of 2014 IEEE Int'l Conf. on Systems, Man, and Cybernetics. San Diego:IEEE, 2014. 742-747.[doi:10.1109/SMC.2014.69 73999]
    [81] Shrivastava A, Li P. Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). In:Proc. of the 28th Annual Conf. on Neural Information Processing Systems. Montreal:Curran Associates, Inc., 2014. 2321-2329.
    [82] Zhu K, Wang H, Bai H, Li J, Qiu Z, Cui H, Chang EY. Parallelizing support vector machines on distributed computers. In:Proc. of the 21st Annual Conf. on Neural Information Processing Systems. Vancouver:Curran Associates, Inc., 2007. 257-264.
    [83] Miao DQ, Wang GY, Liu Q, Lin ZY, Yao YY. Granular Computing:Past, Present and Future. Beijing:Science Press, 2007 (in Chinese).
    [84] Choudhury MD, Lin YR, Sundaram H, Candan KS, Xie L, Kelliher A. How does the data sampling strategy impact the discovery of information diffusion in social media? In:Proc. of the 4th Int'l Conf. on Weblogs and Social Media. Washington:The AAAI Press, 2010. 34-41.
    [85] García-Pedrajas N, de Haro-García A, Pérez-Rodríguez J. A scalable approach to simultaneous evolutionary instance and feature selection. Information Sciences, 2013,228:150-174.[doi:10.1016/j.ins.2012.10.006]
    [86] Guha S, Rastogi R, Shim K. Cure:An efficient clustering algorithm for large databases. Information Systems, 2001,26(1):35-58.[doi:10.1016/S0306-4379(01)00008-4]
    [87] Mardani M, Mateos G, Giannakis GB. Dynamic anomalography:Tracking network anomalies via sparsity and low rank. The Journal of Selected Topics in Signal Processing, 2013,7(1):50-66.[doi:10.1109/JSTSP.2012.2233193]
    [88] Ball NM, Brunner RJ. Data mining and machine learning in astronomy. Int'l Journal of Modern Physics D, 2010,19(7):1049-1106.[doi:10.1142/S0218271810017160]
    [89] Li S, Wu H, Wan D, Zhu J. An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowledge Based Systems, 2011,24(1):40-48.[doi:10.1016/j.knosys.2010.07.003]
    [90] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. Communications of the ACM, 2008,51(1):107-113.[doi:10.1145/1327452.1327492]
    [91] McNabb AW, Monson CK, Seppi KD. Parallel PSO using mapreduce. In:Proc. of the IEEE Congress on Evolutionary Computation. Singapore:IEEE, 2007. 7-14.[doi:10.1109/CEC.2007.4424448]
    [92] Jin C, Vecchiola C, Buyya R. MRPGA:An extension of MapReduce for parallelizing genetic algorithms. In:Proc. of the 4th Int'l Conf. on e-Science. Indianapolis:IEEE Computer Society, 2008. 214-221.[doi:10.1109/eScience.2008.78]
    [93] Zhang J, Li T, Ruan D, Gao Z, Zhao C. A parallel method for computing rough set approximations. Information Sciences, 2012, 194:209-223.[doi:10.1016/j.ins.2011.12.036]
    [94] Zhang J, Wong JS, Li T, Pan Y. A comparison of parallel large-scale knowledge acquisition using rough set theory on different MapReduce runtime systems. Int'l Journal of Approximate Reasoning, 2014,55(3):896-907.[doi:10.1016/j.ijar.2013.08.003]
    [95] Feigelson ED, Babu GJ. Big data in astronomy. Significance, 2012,9(4):22-25.[doi:10.1111/j.1740-9713.2012.00587.x]
    [96] Borne K. A machine learning classification broker for the LSST transient database. Astronomische Nachrichten, 2008,329(3):255-258.[doi:10.1002/asna.200710946]
    [97] Zhao YH, Cui CZ. From virtual observatory to astroinformatics. e-Science Technology & Application, 2011,2(3):3-12 (in Chinese with English abstract).
    [98] Kennedy D, Norman C. What don't we know? Science, 2005,309(5731):75-75.[doi:10.1126/science.309.5731.75]
    [99] Debosscher J, Sarro LM, Aerts C, Cuypers J, Vandenbussche B, Garrido R, Solano E. Automated supervised classification of variable stars. I. Methodology. Astronomy and AStrophysics, 2007,475(3):1159-1183.[doi:10.1051/0004-6361:20077638]
    [100] Henrion M, Mortlock DJ, Hand DJ, Gandy A. A Bayesian approach to star-galaxy classification. Monthly Notices of the Royal Astronomical Society, 2011,412(4):2286-2302.[doi:10.1111/j.1365-2966.2010.18055.x]
    [101] Ordóñez D, Dafonte C, Arcay B, Manteiga M. HSC:A multi-resolution clustering strategy in self-organizing maps applied to astronomical observations. Applied Soft Computing, 2012,12(1):204-215.[doi:10.1016/j.asoc.2011.08.052]
    [102] Murphy D, Geach J, Bower R. ORCA:The overdense red-sequence cluster algorithm. Monthly Notices of the Royal Astronomical Society, 2012,420(3):1861-1881.[doi:10.1111/j.1365-2966.2011.19782.x]
    [103] Borne KD, Vedachalam A. Surprise detection in multivariate astronomical data. In:Feigelson ED, Babu GJ, eds. Proc. of the Statistical Challenges in Modern Astronomy V. Berlin:Springer-Verlag, 2012. 275-289.[doi:10.1007/978-1-4614-3520-4_26]
    [104] Dutta H, Giannella C, Borne KD, Kargupta H. Distributed top-k outlier detection from astronomy catalogs using the DEMAC system. In:Proc. of the 2007 SIAM Int'l Conf. on Data Mining. Philadelphia:SIAM, 2007. 473-478.[doi:10.1137/1.978161197 2771]
    [105] Kubica J, Denneau L, Grav T, Heasley J, Jedicke R, Masiero J, Milani A, Moore A, Tholen D, Wainscoat R. Efficient intra-and inter-night linking of asteroid detections using kd-trees. Icarus, 2007,189(1):151-168.[doi:10.1016/j.icarus.2007.01.008]
    [106] Huijse P, Estevez P, Protopapas P, Principe J, Zegers P. Computational intelligence challenges and applications on large-scale astronomical time series databases. IEEE Computational Intelligence Magazine, 2014,9(3):27-39.[doi:10.1109/MCI.2014.23261 00]
    [107] Waniak W. Removing cosmic-ray hits from CCD images in real-time mode by means of an artificial neural network. Experimental Astronomy, 2006,21(3):151-168.[doi:10.1007/s10686-007-9079-0]
    [108] Yu J, Yin Q, Guo P, Luo AL. A deconvolution extraction method for 2D multi-object fibre spectroscopy based on the regularized least-squares QR-factorization algorithm. Monthly Notices of the Royal Astronomical Society, 2014,443(2):1381-1389.[doi:10. 1093/mnras/stu1250]
    [109] Hey T, Tansley S, Tolle K. The Fourth Paradigm:Data-Intensive Scientific Discovery. Redmond:Microsoft Research, 2009.
    附中文参考文献:
    [2] 郭平.软件可靠性工程中的计算智能方法.北京:科学出版社,2012.14-19,234-254.
    [4] 李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考.中国科学院院刊, 2012,27(6):647-657.[doi:10.3969/j.issn.1000-3045.2012.06.001]
    [31] 余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天.计算机研究与发展,2013,50(9):1799-1804.
    [63] 公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究.软件学报,2009,20(2):271-289. http://www.jos.org.cn/1000-9825/3483.htm[doi:10.3724/SP.J.1001.2009.03483]
    [83] 苗夺谦,王国胤,刘清,林早阳,姚一豫.粒计算:过去、现在与展望.北京:科学出版社,2007.
    [97] 赵永恒,崔辰州.从虚拟天文台到天文信息学.科研信息化技术与应用,2011,2(3):3-12.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郭平,王可,罗阿理,薛明志.大数据分析中的计算智能研究现状与展望.软件学报,2015,26(11):3010-3025

Copy
Share
Article Metrics
  • Abstract:5940
  • PDF: 15214
  • HTML: 3316
  • Cited by: 0
History
  • Received:May 29,2015
  • Revised:August 26,2015
  • Online: November 04,2015
You are the first2036723Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063