Face Feature Representation Based on Difference Local Directional Pattern
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    A face feature representation method based on difference local directional pattern (DLDP) is proposed. Firstly, each pixel of every facial image sub-block gains eight edge response values by convolving the local neighborhood with eight Kirsch masks. Then, the difference of each pair of neighboring edge response values is calculated to form eight new difference directions. The top k difference response values are selected and the corresponding directional bits are set to 1. The remaining (8-k) bits are set to 0, thus forming the binary expression of a difference local direction pattern. In addition, high-resolution Kirsch masks only consider directions but ignore the weight values of each pixel location. DLDP proposes a design method of weight values. Finally, the sub-histogram is calculated by accumulating the number of different DLDP of image blocks. All sub-histograms of an image are concatenated into a new face descriptor. Experimental results show that DLDP achieves state-of-the-art performance for difficult problems such as expression, illumination and occlusion-robust face recognition in most cases. Especially, DLDP gets better results for occlusion problem.

    Reference
    [1] Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition:A literature survey. ACM Computing Surveys, 2003,34(4):399-485.[doi:10.1145/954339.954342]
    [2] Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans. on Circuits and Systems for Video Technology, 2004,14(1):4-20.[doi:10.1109/TCSVT.2003.818349]
    [3] Jafri R, Arabnia HR. A survey of face recognition techniques. Journal of Information Processing System, 2009,5(2):41-68.[doi:10.3745/JIPS.2009.5.2.041]
    [4] Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1):71-86.[doi:10.1162/jocn.1991.3.1. 71]
    [5] Comon P. Independent component analysis-A new concept. Signal Process, 1994,36(3):287-314.[doi:10.1016/0165-1684(94)90 029-9]
    [6] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces versus Fisherfaces:Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720.[doi:10.1109/34.598228]
    [7] Yang J, Zhang D, Frangi AF, Yang J. Two-Dimensional PCA:A new approach to appearance-based face representation and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(1):131-137.[doi:10.1109/TPAMI.2004.1261097]
    [8] Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319-2323.[doi:10.1126/science.290.5500.2319]
    [9] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323-2326.[doi:10.1126/science.290.5500.2323]
    [10] He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using laplacianfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(3):328-340.[doi:10.1109/TPAMI.2005.55]
    [11] He X, Cai D, Yan S, Zhang H. Neighborhood preserving embedding. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2005. 1208-1213.[doi:10.1109/ICCV.2005.167]
    [12] Yan SC, Xu D, Zhang BY. Graph embedding and extensions:A general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(1):40-51.[doi:10.1109/TPAMI.2007.250598]
    [13] Li ZK, Ding LX, Wang Y. A robust dimensionality reduction method from laplacian orientations. In:Proc. of the 15th IEEE Int'l Conf. on High Performance Computing and Communications. 2013. 345-351.[doi:10.1109/HPCC.and.EUC.2013.57]
    [14] Li ZK, Ding LX, Wang Y, He JR. Face representation with gradient orientations and euler mapping:Application to face recognition. Int'l Journal of Pattern Recognition and Artificial Intelligence, 2014,28(8):1-21.[doi:10.1142/S021800141456014X]
    [15] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In:Proc. of the NIPS, Vol.14. 2001. 585-591. http://machinelearning.wustl.edu/mlpapers/paper_files/nips02-AA42.pdf
    [16] Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. on Image Process, 2002,11(4):467-476.[doi:10.1109/TIP.2002.999679]
    [17] Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns:Application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006,28(12):2037-2041.[doi:10.1109/TPAMI.2006.244]
    [18] Tan XY, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. on Image Processing, 2010,19(6):1635-1650.[doi:10.1109/TIP.2010.2042645]
    [19] Zhang WC, Shan SG, Gao W, Zhang HM. Local gabor binary pattern histogram sequence (lgbphs):A novel non-statistical model for face representation and recognition. In:Proc. of the IEEE Int'l Conf. and Computer Vision. 2005. 786-791.[doi:10.1109/ICCV. 2005.147]
    [20] Heikkilä M, Pietikäinen M, Schmid C. Description of interest regions with local binary patterns. Pattern Recognition, 2009,42(3):425-436.[doi:10.1016/j.patcog.2008.08.014]
    [21] Lei Z, Liao SC, Pietikainen M, Li SZ. Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans. on Image Processing, 2011,20(1):247-256.[doi:10.1109/TIP.2010.2060207]
    [22] Jabid T, Kabir MH, Chae O. Robust facial expression recognition based on local directional pattern. ETRI Journal, 2010,32(5):784-794.[doi:10.4218/etrij.10.1510.0132]
    [23] Zhong FJ, Zhang JS. Face recognition with enhanced local directional patterns. Neurocomputing, 2013,119:375-384.[doi:10.1016/j.neucom.2013.03.020]
    [24] Tzimiropoulos G, Zafeiriou S, Pantic M. Subspace learning from image gradient orientations. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012,34(12):2454-2466.[doi:10.1109/TPAMI.2012.40]
    [25] Zhang TP, Tang YY, Fang B, Shang ZW, Liu XY. Face recognition under varying illumination using gradientfaces. IEEE Trans. on Image Processing, 2009,18(11):2599-2605.[doi:10.1109/TIP.2009.2028255]
    [26] Ojala T, Pietikainen M. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(7):971-987.[doi:10.1109/TPAMI.2002.1017623]
    [27] Martinez AM, Benavente R. The AR face database. CVC Technical Report, #24, 1998.
    [28] Lee KC, Ho J, Kriegman DJ. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(5):684-698.[doi:10.1109/TPAMI.2005.92]
    [29] Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(12):1615-1618.[doi:10.1109/TPAMI.2003.1251154]
    [30] Cai D, He XF, Han JW. Spectral regression for efficient regularized subspace learning. In:Proc. of the IEEE 11th Int'l Conf. on Computer Vision. 2007. 1-8.[doi:10.1109/ICCV.2007.4408855]
    [31] Phillips PJ, Moon H, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face recognition algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(10):1090-1104.[doi:10.1109/34.879790]
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李照奎,丁立新,王岩,何进荣,丁国辉.基于差值局部方向模式的人脸特征表示.软件学报,2015,26(11):2912-2929

Copy
Share
Article Metrics
  • Abstract:4741
  • PDF: 6985
  • HTML: 2885
  • Cited by: 0
History
  • Received:May 26,2015
  • Revised:August 26,2015
  • Online: November 04,2015
You are the first2032265Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063