Abnormal Crowd Detection Based on Multi-Scale Recurrent Neural Network
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Because of the great variations of crowd density and crowd dynamics, as well as the existence of many shelters in scenes, the abnormal crowd event detection and localization are still challenging problems and hot topics of the crowd scene analysis. Based on the spatial-temporal modeling of the crowd scene, this paper proposes an abnormal crowd event detection and localization approach based on multi-scale recurrent neural network. Firstly, the crowd scenes are split into grids and presented using multi-scale histogram of optical flow (MHOF). Then, different grids are connected to obtain a global time series model of the crowd scene. Finally, a multi-scale recurrent neural network is devised to detect and locate the abnormal event on the time series model of the crowd scene. In the multi-scale recurrent neural network, the multi-scale hidden layers are used to model the spatial relation among different scale neighbors, and the feedback loops are used to catch the temporal relation. Extensive experiments demonstrate the effectiveness of the presented approach.

    Reference
    Related
    Cited by
Get Citation

蔡瑞初,谢伟浩,郝志峰,王丽娟,温雯.基于多尺度时间递归神经网络的人群异常检测.软件学报,2015,26(11):2884-2896

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 01,2015
  • Revised:August 26,2015
  • Adopted:
  • Online: November 04,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063