Forward-Motion Blurring Kernel Based on Generalized Motion Blurring Model
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61272354, 61273364, 61300176, 61473031, 61472029); Beijing Natural Science Foundation of China (4152042); Fundamental Research Funds for the Central Universities of China (2013JBM019)

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In this paper, a generalized motion blurring model is constructed from the viewpoint of optical flow. Then based on the model, forward motion blurring kernel is deduced. The kernel provides a theoretical foundation for forward motion deblurring of high speed railway from image sequences. A fast method is also designed to estimate forward motion blurring kernel on this theory. Three specific problems are solved in this process. First, the analytical solution under quick motion estimation method is obtained. Next, the analytical solution under quick motion estimation method of planar scene direction is achieved. Lastly, the numerical calculation algorithm of forward motion blurring kernel is developed. Experimental results validate the proposed method.

    Reference
    [1] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging. London: CRC Press, 1998. 50-74.
    [2] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1):259-268. [doi: 10.1016/0167-2789(92)90242-F]
    [3] Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind de-convolution algorithms. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2009). Miami: IEEE, 2009. 1964-1971. [doi: 10.1109/CVPR.2009.5206 815]
    [4] Cho S, Lee S. Fast motion deblurring. ACM Trans. on Graphics, 2009,28(5):145. [doi: 10.1145/1618452.1618491]
    [5] Fusco T, Conan JM, Mugnier LM, Michau V, Rousset G. Characterization of adaptive opticspoint spread function for anisoplanatic imaging. Application to Stellar Field Deconvolution, Astronomy and Astrophysics Supplement Series, 2000,142(1):149-156. [doi: 10.1051/aas:2000145]
    [6] Whyte O, Sivic J, Zisserman A, Ponce J. Non-Uniform deblurring for shaken images. Int'l Journal of Computer Vision, 2012,98(2): 168-186. [doi: 10.1007/s11263-011-0502-7]
    [7] Portz T, Zhang L, Jiang H. Optical flow in the presence of spatially-varying motion blur. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012. 1752-1759. [doi: 10.1109/CVPR.2012.6247871]
    [8] Gupta A, Joshi N, Zitnick L, Cohen M, Curless B. Single image deblurring using motion density functions. In: Proc. of the European Conf. on Computer Vision (ECCV). Heidelberg: Springer-Verlag, 2010. 171-184. [doi: 10.1007/978-3-642-15549-9_13]
    [9] Hirsch M, Schuler CJ, Harmeling S, Scholkopf B. Fast removal of non-uniform camera shake. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). Barcelona: IEEE, 2011. 6-13. [doi: 10.1109/ICCV.2011.6126276]
    [10] Zheng S, Xu L, Jia J. Forward motion deblurring. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). Sydney: IEEE, 2013. 1465-1472. [doi: 10.1109/ICCV.2013.185]
    [11] Horn BKP. Robot Vision. Cambridge: MIT Press, 1986. 30-448.
    [12] Horn BK, Schunck BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3):185-203. [doi: 10.1016/0004-3702(81)9002 4-2]
    [13] Szeliski R. Computer Vision: Algorithms and Applications. Heidelberg: Springer-Verlag, 2010. 405-410.
    [14] Bruss AR, Horn BKP. Passive navigation. Computer Vision, Graphics, and Image Processing, 1983,21(1):3-20. [doi: 10.1016/S073 4-189X(83)80026-7]
    [15] Negahdaripour S, Horn BKP. Direct passive navigation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987,9(1): 168-176. [doi: 10.1109/TPAMI.1987.4767884]
    [16] Strang G. Computational Science and Engineering. Wellesley: Wellesley Cambridge Press, 2007. 128-471.
    [17] Wang SC, Zheng JY, Luo SW, Luo XY, Huang YP, Gao DL. Route panorama acquisition and rendering for high-speed railway monitoring. In: Proc. of the 2013 IEEE Int'l Conf. on Multimedia and Expo (ICME). San Jose: IEEE, 2013. 1-6. [doi: 10.1109/ ICME.2013.6607592]
    [18] Bresenham JE. Algorithm for computer control of a digital plotter. IBM Systems Journal, 1965,4(1):25-30. [doi: 10.1147/sj.41.00 25]
    [19] Horn BKP. Circle generators for display devices. Computer Graphics and Image Processing, 1976,5(2):280-288. [doi: 10.1016/014 6-664X(76)90036-8]
    [20] Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Heidelberg: Springer Science & Business Media, 2006. 67-136. [doi: 10.1007/978-0-387-44588-5]
    [21] Wang L, Huang Y, Luo X, Wang Z, Luo S. Image deblurring with filters learned by extreme learning machine. Neurocomputing, 2011,74(16):2464-2474. [doi: 10.1016/j.neucom.2010.12.035]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

蒋欣兰,王亮,罗晓月,王胜春,罗四维.基于广义运动模糊模型的前向运动模糊核.软件学报,2016,27(8):2135-2146

Copy
Share
Article Metrics
  • Abstract:2875
  • PDF: 4217
  • HTML: 1691
  • Cited by: 0
History
  • Received:March 18,2015
  • Revised:June 01,2015
  • Online: August 08,2016
You are the first2032479Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063