Artificial Bee Colony Algorithm Based on Orthogonal Experimental Design
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [53]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Developed in recent years, artificial bee colony (ABC) algorithm is a relatively new global optimization algorithm that has been successfully used to solve various real-world optimization problems. However, in the algorithm, including its improved versions, the scout bee usually employs the random initialization method to generate a new food source. Although this method is relatively straightforward, it tends to result in the loss of the scout bee's search experience. Based on the intrinsic mechanism of ABC's search process, this paper proposes a new scheme that employs the orthogonal experimental design (OED) to generate a new food source for the scout bee so that the scout bee can preserve useful information of the abandoned food source and the global optimal solution in different dimensions simultaneously, and therefore enhancing the search efficiency of ABC. A series of experiments on the 16 well-known benchmark functions has been conducted with the experimental results showing the following advantages of the presented approach: 1) it can significantly improve the solution accuracy and convergence speed of ABC almost without increasing the running time; 2) it has better performance than other three typical mutation methods; and 3) it can be used as a general framework to enhance the performance of other improved ABCs with good applicability.

    Reference
    [1] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, Kayseri: Erciyes University, 2005.
    [2] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007,39(3):459-471. [doi: 10.1007/s10898-007-9149-x]
    [3] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. of the IEEE Int'l Conf. on Neural Networks. Piscataway: IEEE, 1995. 1942-1948. [doi: 10.1109/ICNN.1995.488968]
    [4] Hu W, Li ZS. A simpler and more effective particle swarm optimization algorithm. Ruan Jian Xue Bao/Journal of Software, 2007, 18(4):861-868 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/861.htm [doi: 10.1360/jos180861]
    [5] Gao WF, Liu SY, Huang LL. Inspired artificial bee colony algorithm for global optimization problems. Acta Electronic Sinica, 2012,40(12):2396-2403 (in Chinese with English abstract). http://www.ejournal.org.cn/CN/abstract/abstract7004.shtml [doi: 10.3969/j.issn.0372-2112.2012.12.007]
    [6] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 2009,214(1): 108-132. [doi: 10.1016/j.amc.2009.03.090]
    [7] Jia ZS, Si XC, Wang T. Optimum method for sea clutter parameter based on artificial bee colony. Journal of Central South University (Science and Technology), 2012,43(9):3485-3489 (in Chinese with English abstract). http://new.zndxzk.com.cn/paper/ paperView.aspx?id=paper_30216
    [8] Karaboga D, Ozturk C, Karaboga N, Gorkemli B. Artificial bee colony programming for symbolic regression. Information Sciences, 2012,209(11):1-15. [doi: 10.1016/j.ins.2012.05.002]
    [9] Garro BA, Sossa H, Vázquez RA. Artificial neural network synthesis by means of artificial bee colony (ABC) algorithm. In: Proc. of the IEEE Congress on Evolutionary Computation. New Orleans: IEEE, 2011. 331-338. [doi: 10.1109/CEC.2011.5949637]
    [10] Yeh W, Hsieh T. Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation. Neural Computing and Applications, 2012,21(2):365-375. [doi: 10.1007/s00521-010-0435-z]
    [11] Szeto WY, Wu Y, Ho SC. An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research, 2011,215(1):126-135. [doi: 10.1016/j.ejor.2011.06.006]
    [12] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 2008,8(1):687-697. [doi: 10.1016/j.asoc.2007.05.007]
    [13] Zhu G, Kwong S. Gbest-Guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 2010,217(7):3166-3173. [doi: 10.1016/j.amc.2010.08.049]
    [14] Gao W, Liu S, Huang L. A novel artificial bee colony algorithm with Powell's method. Applied Soft Computing, 2013,13(9): 3763-3775. [doi: 10.1016/j.asoc.2013.05.012]
    [15] Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 2014,42(1):21-57. [doi: 10.1007/s10462-012-9328-0]
    [16] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 2012, 192(6):120-142. [doi: 10.1016/j.ins.2010.07.015]
    [17] Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm. Applied Soft Computing, 2011,11(2):2888-2901 [doi: 10.1016/j.asoc.2010.11.025]
    [18] Das S, Biswas S, Kundu S. Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization. Applied Soft Computing, 2013,13(12):4676-4694. [doi: 10.1016/j.asoc.2013.07.009]
    [19] Gao W, Liu S. Improved artificial bee colony algorithm for global optimization. Information Processing Letters, 2011,111(17): 871-882. [doi: 10.1016/j.ipl.2011.06.002]
    [20] Gao W, Liu S, Huang L. A global best artificial bee colony algorithm for global optimization. Journal of Computational and Applied Mathematics, 2012,236(11):2741-2753. [doi: 10.1016/j.cam.2012.01.013]
    [21] Gao W, Liu S. A modified artificial bee colony algorithm. Computers & Operations Research, 2012,39(3):687-697. [doi: 10.1016/ j.cor.2011.06.007]
    [22] Kang F, Li J, Xu Q. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Computers & Structures, 2009, 87(13):861-870. [doi: 10.1016/j.compstruc.2009.03.001]
    [23] Kang F, Li J, Ma Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Information Sciences, 2011,181(16):3508-3531. [doi: 10.1016/j.ins.2011.04.024]
    [24] Bansal JC, Sharma H, Arya KV, Nagar A. Memetic search in artificial bee colony algorithm. Soft Computing, 2013,17(10): 1911-1928. [doi: 10.1007/s00500-013-1032-8]
    [25] El-Abd M. Generalized opposition-based artificial bee colony algorithm. In: Proc. of the IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012. 1-4. [doi: 10.1109/CEC.2012.6252939]
    [26] Gao W, Liu S, Huang L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. on Cybernetics, 2013,43(3):1011-1024. [doi: 10.1109/TSMCB.2012.2222373]
    [27] Zhao XM. Design of Experiments. Beijing: Science Press, 2006 (in Chinese).
    [28] Zhan Z, Zhang J, Li Y, Shi Y. Orthogonal learning particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2011, 15(6):832-847. [doi: 10.1109/TEVC.2010.2052054]
    [29] Wang Y. Solving complex continuous optimization problems based on evolutionary algorithms [Ph.D. Thesis]. Changsha: Central South University, 2011 (in Chinese with English abstract). [doi: 10.7666/d.y1918388]
    [30] Leung Y, Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2001,5(1):41-53. [doi: 10.1109/4235.910464]
    [31] Cai ZX, Jiang ZY, Wang Y, Luo YD. A novel constrained optimization evolutionary algorithm based on orthogonal experimental design. Chinese Journal of Computers, 2010,33(5):855-864 (in Chinese with English abstract). http://cjc.ict.ac.cn/qwjs/view. asp?id=3091 [doi: 10.3724/SP.J.1016.2010.00855]
    [32] Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans. on Evolutionary Computation, 1999,3(2):82-102. [doi: 10.110.9/4235.771163]
    [33] Wang Y, Cai Z, Zhang Q. Enhancing the search ability of differential evolution through orthogonal crossover. Information Sciences, 2012,185(1):153-177. [doi: 10.1016/j.ins.2011.09.001]
    [34] Gong WY, Cai ZH. Research on an e-domination based orthogonal differential evolution algorithm for multi-objective optimization. Journal of Computer Research and Development, 2009,46(4):655-666 (in Chinese with English abstract). http://crad.ict.ac.cn/CN/ Y2009/V46/I4/655
    [35] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report, Singapore: Nanyang Technological University, 2005.
    [36] Zhou X, Wu Z, Wang H, Rahnamayan S. Enhancing differential evolution with role assignment scheme. Soft Computing, 2014, 18(11):2209-2225. [doi: 10.1007/s00500-013-1195-3]
    [37] Xiong G, Shi D, Duan X. Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Computers & Operations Research, 2014,41:125-139. [doi: 10.1016/j.cor.2013.07.021]
    [38] Alatas B. Chaotic bee colony algorithms for global numerical optimization. Expert Systems with Applications, 2010,37(8): 5682-5687. [doi: 10.1016/j.eswa.2010.02.042]
    [39] Ren Y, Wu Y. An efficient algorithm for high-dimensional function optimization. Soft Computing, 2013,17(6):995-1004. [doi: 10.1007/s00500-013-0984-z]
    [40] Sharma TK, Pant M. Enhancing the food locations in an artificial bee colony algorithm. Soft Computing, 2013,17(10):1939-1965. [doi: 10.1007/s00500-013-1029-3]
    [41] Xiang W, An M. An efficient and robust artificial bee colony algorithm for numerical optimization. Computers & Operations Research, 2013,40(5):1256-1265. [doi: 10.1016/j.cor.2012.12.006]
    [42] Luo J, Wang Q, Xiao X. A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization. Applied Mathematics and Computation, 2013,219(20):10253-10262. [doi: 10.1016/j.amc.2013.04.001]
    [43] Garc IAS, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC 2005 special session on real parameter optimization. Journal of Heuristics, 2009,15(6): 617-644. [doi: 10.1007/s10732-008-9080-4]
    [44] Garc IAS, Fern A, Ndez A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 2010,180(10): 2044-2064. [doi: 10.1016/j.ins.2009.12.010]
    [45] Gong MG, Jiao LC, Yang DD, Ma WP. Research on evolutionary multi-objective optimization algorithms. Ruan Jian Xue Bao/ Journal of Software, 2009,20(2):271-289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3483.htm [doi: 10.3724/SP.J.1001.2009.03483]
    [46] Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Enhancing differential evolution utilizing proximity- based mutation operators. IEEE Trans. on Evolutionary Computation, 2011,15(1):99-119. [doi: 10.1109/TEVC.2010.2083670]
    [47] Li G, Niu P, Xiao X. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 2012,12(1):320-332. [doi: 10.1016/j.asoc.2011.08.040]
    [48] Higashi N, Iba H. Particle swarm optimization with Gaussian mutation. In: Proc. of the IEEE Swarm Intelligence Symp. Indianapolis: IEEE, 2003. 72-79. [doi: 10.1109/SIS.2003.1202250]
    [49] Wang H, Wang W, Wu Z. Particle swarm optimization with adaptive mutation for multimodal optimization. Applied Mathematics and Computation, 2013,221(9):296-305. [doi: 10.1016/j.amc.2013.06.074]
    [50] Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation. In: Proc. of the IEEE Congress on Evolutionary Computation. Canberra: IEEE, 2003. 1425-1430. [doi: 10.1109/CEC.2003.1299838]
    [51] Wang H, Liu Y, Zeng S, Li H, Li C. Opposition-Based particle swarm algorithm with Cauchy mutation. In: Proc. of the IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007. 4750-4756. [doi: 10.1109/CEC.2007.4425095]
    [52] Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M. Enhancing particle swarm optimization using generalized opposition-based learning. Information Sciences, 2011,181(20):4699-4714. [doi: 10.1016/j.ins.2011.03.016]
    [53] Zhou XY, Wu ZJ, Wang H, Zhang HY. Elite opposition-based particle swarm optimization. Acta Electronic Sinica, 2013,41(8): 1647-1652 (in Chinese with English abstract). http://www.ejournal.org.cn/CN/abstract/abstract7622.shtml [doi: 10.3969/J.ISSN. 0372-2112.2013.08.031]
    Related
    Cited by
Get Citation

周新宇,吴志健,王明文.基于正交实验设计的人工蜂群算法.软件学报,2015,26(9):2167-2190

Copy
Share
Article Metrics
  • Abstract:4278
  • PDF: 5703
  • HTML: 1889
  • Cited by: 0
History
  • Received:May 19,2014
  • Revised:October 20,2014
  • Online: September 14,2015
You are the first2038195Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063