Mining Moving Object Gathering Pattern Method Via Spatio-Temporal Graph
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61202435); National High-Tech R&D Program of China (863) (2012AA111601); Beijing Natural Science Foundation of China (4132048)

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Moving object gathering pattern represents a group event or incident that involves congregation of moving objects, enabling the prediction of anomalies in traffic system. However, effectively and efficiently discovering the specific gathering pattern remains a challenging issue since the large number of moving objects generate high volume of trajectory data. In order to address this issue, this article proposes a moving object gathering pattern mining method that aims to support the mining of gathering patterns by using spatio-temporal graph. In this method, firstly an improved density based clustering algorithm (DBScan) is used to collect the moving object clusters. Then, a spatio-temporal graph is maintained rather than storing the spatial coordinates to obtain the spatio-temporal changes in real time. Finally, a gathering mining algorithm and its improved version are developed by searching the maximal complete graphs which meet the spatio-temporal constraints. The effectiveness and efficiency of the proposed methods are outperformed other existing methods on both real and large trajectory data.

    Reference
    [1] Dieter P, Jensen CS. Indexing of network constrained moving objects. In: Proc. of the 11th ACM Int'l Symp. on Advances in Geographic Information Systems. New Orleans: ACM Press, 2003. 25-32. [doi: 10.1145/956676.956680]
    [2] Bart K, Othman W. Modeling uncertainty of moving objects on road networks via space–time prisms. Int'l Journal of Geographical Information Science, 2009,23(9):1095-1117. [doi: 10.1080/13658810802097485]
    [3] Zheng K, Zheng Y, Yuan NJ, Shang S. On discovery of gathering patterns from trajectories. In: Proc. of the 29th IEEE Int'l Conf. on Data Engineering. Brisbane: IEEE, 2013. 242-253. [doi: 10.1109/ICDE.2013.6544829]
    [4] Patrick L, Imfeld S. Analyzing relative motion within groups of trackable moving point objects. In: Proc. of the 2nd Int'l Conf. on Geographic Information Science. Boulder: Springer-Verlag, 2002. 132-144. [doi: 10.1007/3-540-45799-2_10]
    [5] Gudmundsson J, van Kreveld M. Computing longest duration flocks intrajectory data. In: Proc. of the 18th ACM Int'l Symp. on Advances in Geographic Information Systems. Arlington: ACM Press, 2006. 35-42. [doi: 10.1145/1183471.1183479]
    [6] Li ZH, Ding BL, Han JW, Kays R. Swarm: Mining relaxed temporal moving object clusters. Proc. of the VLDB Endowment, 2010, 3(1-2):723-734. [doi: 10.14778/1920841.1920843]
    [7] Tang LA, Zheng Y, Yuan J, Han JW, Leung A, Hung CC, Peng WC. On discovery of traveling companions from streaming trajectories. In: Proc. of the 28th IEEE Int'l Conf. on Data Engineering. Washington: IEEE, 2012. 186-197. [doi: 10.1109/ICDE.20 12.33]
    [8] Liu W, Zheng Y, Chawla S, Yuan J, Xie X. Discovering spatio-temporal causal interactions in traffic data streams. In: Proc. of the 17th Int'l Conf. on Knowledge Discovery and Data Mining. San Diego: ACM Press, 2011. 1010-1018. [doi: 10.1145/2020408.202 0571]
    [9] Pang LXL, Chawla S, Liu W, Zheng Y. On mining anomalous patterns in road traffic streams. In: Proc. of the 7th Int'l Conf. on Advanced Data Mining and Applications. Beijing: Springer-Verlag, 2011. 237-251. [doi: 10.1007/978-3-642-25856-5_18]
    [10] Pang LX, Chawla S, Liu W, Zheng Y. On detection of emerging anomalous traffic patterns using GPS data. Data & Knowledge Engineering, 2013,87:357-373. [doi: 10.1016/j.datak.2013.05.002]
    [11] Chawla S, Zheng Y, Hu JF. Inferring the root cause in road traffic anomalies. In: Proc. of the 12th IEEE Int'l Conf. on Data Mining. Brussels: IEEE, 2012. 141-150. [doi: 10.1109/ICDM.2012.104]
    [12] Yu YW, Wang Q, Wang XD, Wang H, He J. Online clustering for trajectory data stream of moving objects. Computer Science and Information Systems, 2013,10(3):1293-1317. [doi: 10.2298/CSIS120723049Y]
    [13] Shi CL, Gan WY, Wu L, Zhang MJ, Tang YB. Clustering trajectories of entities in computer wargames. Ruan Jian Xue Bao/Journal of Software, 2013,24(3):465-475 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4248.htm [doi: 10.3724/SP.J. 1001.2013.04248]
    [14] Jeung H, Yiu ML, Jensen CS. Trajectory pattern mining. In: Proc. of the 13th Int'l Conf. on Knowledge Discovery and Data Mining. San Jose: ACM Press, 2007. 330-339. [doi: 10.1145/1281192.1281230]
    [15] Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA. Indexing the positions of continuously moving objects. In: Proc. of the 2000 Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 331-342. [doi: 10.1145/342009.335427]
    [16] Demiryurek U, Pan B, Banaei-Kashani F, Shahabi C. Towards modeling the traffic data on road networks. In: Proc. of the 2nd Workshop on Computational Transportation Science. Seattle: ACM Press, 2009. 13-18. [doi: 10.1145/1645373.1645376]
    [17] Hartmut G, de Almeida T, Ding ZM. Modeling and querying moving objects in networks. Int'l Journal on Very Large Data Bases, 2006,15(2):165-190. [doi: 10.1007/s00778-005-0152-x]
    [18] de Almeida VT, Güting RH. Indexing the trajectories of moving objects in networks. GeoInformatica, 2005,9(1):33-60. [doi: 10. 1007/s10707-004-5621-7]
    [19] Ding ZM, Li XN, Yu B. Indexing the historical, current, and future locations of network-constrained moving objects. Ruan Jian Xue Bao/Journal of Software, 2009,20(12):3193-3204 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3400. htm [doi: 10.3724/SP.J.1001.2009.03400]
    [20] Del Mondo G, Stell JG, Claramunt C, Thibaud R. A graph model for spatio-temporal evolution. Journal of Universal Computer Science, 2010,16(11):1452-1477.
    [21] Del Mondo G, Rodríguez MA, Claramunt C, Bravo L, Thibaud R. Modeling consistency of spatio-temporal graphs. Data & Knowledge Engineering, 2013,84:59-80. [doi: 10.1016/j.datak.2012.12.007]
    [22] Ester M, Kriegel HP, Jörg S, Xu XW. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: ACM Press, 1996. 226-231.
    [23] Bron C, Kerbosch J. Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 1973,16(9):575-577. [doi: 10.1145/362342.362367]
    [24] Cazals F, Karande C. A note on the problem of reporting maximal cliques. Theoretical Computer Science, 2008,407(1-3):564-568.
    [25] Yuan J, Zheng Y, Zhang CY, Xie WL, Xie X, Huang Y. T-Drive: Driving directions based on taxi trajectories. In: Proc. of the 18th ACM Int'l Symp. on Advances in Geographic Information Systems. San Jose: ACM Press, 2010. 99-108.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张峻铭,李静林,王尚广,刘志晗,袁泉,杨放春.基于时空图的移动对象聚集模式挖掘方法.软件学报,2016,27(2):348-362

Copy
Share
Article Metrics
  • Abstract:4170
  • PDF: 5916
  • HTML: 1386
  • Cited by: 0
History
  • Received:January 07,2014
  • Revised:April 03,2014
  • Online: November 04,2015
You are the first2035055Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063