Causality and Its Applications in Social Media: A Survey
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [68]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The main objective of many studies in the physical, behavioral, social, and biological sciences is the elucidation of cause-effect relationships among variables or events. Many causality problems, occur when new words and behaviors are mapped from individuals to the Internet or are created by the Internetitself. Causality is hidden behind correlations; conclusion made by correlation analysis is likely to be unreliable or even wrong; and in absence of causality, methods based on correlation is unable to intervene, control and manage. Thus, causal analysis is necessary in social media. This paper first introduces the value, importance, and necessity of causality analysis, followed by causality problems existing in social media. Then, a brief overview of the recent research on causal inference is provided with analysis basic theory, problems and research status. Finally, comparisons among previous studies are made to suggest the future research directions and causality application in social media

    Reference
    [1] Pearl J. Causality: Models, Reasoning and Inference. Cambridge: Cambridge University Press, 2000.
    [2] Xu ZH, Zhang Y, Wu Y, Yang Q. Modeling user posting behavior on social media. In: Proc. of the SIGIR 2012. New York: ACM Press, 2012. 545-554. [doi: 10.1145/2348283.2348358]
    [3] Yang Z, Guo JY, Cai KK, Tang JZ, Li J, Zhang L, Su Z. Understanding retweeting behaviors in social networks. In: Proc. of the CIKM 2010. New York: ACM Press, 2010. 1633-1636. [doi: 10.1145/1871437.1871691]
    [4] Zhang J, Liu B, Tang J, Chen T, Li JZ. Social influence locality for modeling retweeting behaviors. In: Proc. of the IJCAI 2013. Menlo Park: AAAI Press, 2013. 2761-2767.
    [5] Hopcroft J, Lou TC, Tang J. Who will follow you back? Reciprocal relationship prediction. In: Proc. of the CIKM 2011. New York: ACM Press, 2011. 1137-1146. [doi: 10.1145/2063576.2063740]
    [6] Even-Dar E, Kearns M, Suri S. A network formation game for bipartite exchange economies. In: Proc. of the SODA 2007. Philadelphia: SIAM, 2007. 697-706. [doi: 10.1145/1283383.128345]
    [7] Guo SH, Wang MQ, Leskovec J. The role of social networks in online shopping: Information passing, price of trust, and consumer choice. In: Proc. of the 12th ACM Conf. on Electronic Commerce. New York: ACM Press, 2011. 157-166. [doi: 10.1145/1993574. 1993598]
    [8] Henkel J, Block J. Peer influence in network markets: A theoretical and empirical analysis. Journal of Evolutionary Economics, 2013,23(5):925-953. [doi: 10.1007/s00191-012-0302-4]
    [9] Lin YH, Chen CY. Adolescents' impulse buying: Susceptibility to interpersonal influence and fear of negative evaluation. Social Behavior and Personality: An Int'l Journal, 2012,40(3):353-358.
    [10] Ver Steeg G, Galstyan A. Information transfer in social media. In: Proc. of the WWW 2012. New York: ACM Press, 2012. 509-518. [doi: 10.1145/2187836.2187906]
    [11] Bottou L, Peters J, Onero-Candela J, Charles DX, Chickering DM, Portugaly E, Ray D, Simard P, Snelson E. Counterfactual reasoning and learning systems: The example of computational advertising. Journal of Machine Learning Research, 2013,14(10):3207-3260.
    [12] Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S. Feedback effects between similarity and social influence in online communities. In: Proc. of the KDD 2008. New York: ACM Press, 2008. 160-168. [doi: 10.1145/1401890.1401914]
    [13] Lewis K, Gonzalez M, Kaufman J. Social selection and peer influence in an online social network. Proc. of the National Academy of Sciences, 2012,109(1):68-72. [doi: 10.1073/pnas.1109739109]
    [14] La Fond T, Neville J. Randomization tests for distinguishing social influence and homophily effects. In: Proc. of the WWW 2010. New York: ACM Press, 2010. 601-610. [doi: 10.1145/1772690.1772752]
    [15] Toulis P, Kao E. Estimation of causal peer influence effects. In: Proc. of The ICML 2013. New York: ACM Press, 2013. 1489-1497.
    [16] Aral S, Walker D. Identifying social influence in networks using randomized experiments. IEEE Intelligent Systems, 2011,26(5): 91-96. [doi: 10.1109/MIS.2011.89]
    [17] Rattigan MJH, Maier M, Jensen D. Relational blocking for causal discovery. In: Proc. of the AAAI 2011. Menlo Park: AAAI Press, 2011. 145-151.
    [18] Oktay H, Taylor BJ, Jensen DD. Causal discovery in social media using quasi-experimental designs. In: Proc. of the KDD Workshop on Social Media Analytics. New York: ACM Press, 2010. 1-9. [doi: 10.1145/1964858.1964859]
    [19] Rattigan MJH, Jensen D. Leveraging D-separation for relational data sets. In: Proc. of the ICDM 2010. Washington: IEEE Computer Society, 2010. 989-994. [doi: 10.1109/ICDM.2010.142]
    [20] 休谟,著;关文运,译.人类理解研究.香港:香港出版贸易公司,1972.
    [21] 康德,著;邓晓芒,译.纯粹理性批判.北京:人民出版社,2011.
    [22] 黑格尔.小逻辑.北京:光明日报出版社,2009.
    [23] 马克思,恩格斯.著;中共中央马克思恩格斯列宁斯大林著作编译局,编译.马克思恩格斯全集(第2版).北京:人民出版社,2007.
    [24] Freedman D, Pisani R, Purves R. Statistics. 4th ed., New York: WW Norton & Co., 2012.
    [25] Ittoo A, Bouma G. Extracting explicit and implicit causal relations from sparse, domain-specific texts. In: Muñoz R, Montoyo A, Métais E, eds. Proc. of the 16th Int'l Conf. on Applications of Natural Language to Information Systems. Berlin, Heidelberg: Springer-Verlag, 2011. 52-63. [doi: 10.1007/978-3-642-22327-3_6]
    [26] Ittoo A, Bouma G. Minimally-Supervised extraction of domain-specific part—Whole relations using Wikipedia as knowledge-base. Data & Knowledge Engineering, 2013,85:57-79. [doi: 10.1016/j.datak.2012.06.004]
    [27] Sorgente A, Vettigli G, Mele F. Automatic extraction of cause-effect relations in natural language text. In: Proc. of the 13th Conf. of the Italian Association for Artificial Intelligence (AI*IA 2013). 2013. 37-48.
    [28] Girju R. Automatic detection of causal relations for question answering. In: Proc. of the ACL Workshop on Multilingual Summarization and Question Answering. Morristown: ACL, 2003. 76-83. [doi: 10.3115/1119312.1119322]
    [29] Girju R. Toward social causality: An analysis of interpersonal relationships in online blogs and forums. In: Proc. of the ICWSM 2010. Menlo Park: AAAI Press, 2010. 66-73.
    [30] Gordon AS, Bejan CA, Sagae K. Commonsense causal reasoning using millions of personal stories. In: Proc. of the AAAI 2011. Menlo Park: AAAI Press, 2011. 1180-1185.
    [31] Kozareva Z. Cause-Effect relation learning. In: Proc. of the TextGraphs Workshop at ACL. Morristown: ACL, 2012. 39-43.
    [32] Radinsky K, Davidovich S, Markovitch S. Learning causality for news events prediction. In: Proc. of the WWW 2012. New York: ACM Press, 2012. 909-918. [doi: 10.1145/2187836.2187958]
    [33] Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. 2nd ed,. Wadsworth: Wadsworth Publishing, 2002.
    [34] Campbell DT, Stanley JC, Gage NL. Experimental and Quasi-Experimental Designs for Research. Houghton Mifflin Boston, 1963.
    [35] Thyer BA. Quasi-Experimental Research Designs. Oxford: Oxford University Press, 2012.
    [36] Sriperumbudur BK, Gretton A, Fukumizu K, Schölkopf B, Lanckriet GR. Hilbert space embeddings and metrics on probability measures. The Journal of Machine Learning Research, 2010,99:1517-1561.
    [37] Székely GJ, Rizzo ML. Brownian Distance Covariance. The Annals of Applied Statistics, 2009. 1236-1265.
    [38] Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. A kernel two-sample test. The Journal of Machine Learning Research, 2012,13:723-773.
    [39] Zhang K, Peters J, Janzing D, Schölkopf B. Kernel-Based conditional independence test and application in causal dict). [doi: 10.3969/j.issn.1000-6788.2013.01.022]
    [64] Zhu MM, Liu SY, Yang YL. Structural learning Bayesian network equivalence classes based on a hybrid method. Acta Electronica Sinica, 2013,41(1):98-104 (in Chinese with English abstract).
    [65] Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 1974,66(5):688. [doi: 10.1037/h0037350]
    [66] David K. Counterfactuals. Cambridge: Harvard University Press, 1973.
    [67] Wang FY, Li XC, Mao WJ, Wang T. Social Computing Methods and Applications. Hangzhou: Zhejiang University Press, 2013 (in Chinese).
    [68] Yang X, Guo Y, Liu Y. Bayesian-Inference-Based recommendation in online social networks. IEEE Trans. on Parallel and Distributed Systems, 2013,24(4):642-651. [doi: 10.1109/TPDS.2012.192]
    [69] Beutel A, Murray K, Faloutsos C, Smola AJ. CoBaFi: Collaborative bayesian filtering. In: Proc. of the WWW 2014. New York: ACM Press, 2014. 97-108. [doi: 10.1145/2566486.2568040]
    [70] Weiss GM, Hirsh H. Event prediction: Learning from ambiguous examples. In: Proc. of the Working Notes of the NIPS'98 Workshop on Learning from Ambiguous and Complex Examples. 1998.
    [71] Vilalta R, Ma S. Predicting rare events in temporal domains. In: Proc. of the ICDM 2003. Washington: IEEE Computer Society, 2002. 474-481. [doi: 10.1109/ICDM.2002.1183991]
    [72] King G, Zeng L. Logistic regression in rare events data. Political Analysis, 2001,9(2):137-163. [doi: 10.1093/oxfordjournals.pan. a004868]
    [73] Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Mining data with rare events: A case study. In: Proc. of the ICTAI 2007. 2007. 132-139.
    [74] Weiss GM. Mining with rarity: A unifying framework. ACM SIGKDD Explorations Newsletter, 2004,6(1):7-19.
    [75] Zhao J, Li X, Dong Z. Online rare events detection. In: Zou Z, Li H, Yang Q, eds. Proc. of the PAKDD 2007. Springer Berlin Heidelberg, 2007. 1114-1121. [doi: 10.1007/978-3-540-71701-0_126]
    [76] Sun Y, Kamel MS, Wang Y. Boosting for learning multiple classes with imbalanced class distribution. In: Proc. of the ICDM 2006. Washington: IEEE Computer Society, 2006. 592-602. [doi: 10.1109/ICDM.2006.29]
    [77] Joshi MV, Kumar V, Agarwal RC. Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proc. of the ICDM 2001. Washington: IEEE Computer Society, 2001. 257-264.
    [78] Joshi MV, Agarwal RC, Kumar V. Predicting rare classes: Can boosting make any weak learner strong? In: Proc. of the KDD 2002. New York: ACM Press, 2002. 297-306. [doi: 10.1145/775047.775092]
    [79] Chawla N, Lazarevic A, Hall L, Bowyer K. SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač N, Gamberger D, Todorovski L, et al., eds. Proc. of the PKDD 2003. Berlin, Heidelberg: Springer-Verlag, 2003. 107-119. [doi: 10.1007/978-3-540-39804-2_12]
    [80] Wu J, Xiong H, Wu P, Chen J. Local decomposition for rare class analysis. In: Proc. of the KDD 2007. New York: ACM Press, 2007. 814-823. [doi: 10.1145/1281192.1281279]
    [81] Agarwal D, Agrawal R, Khanna R, Kota N. Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In: Proc. of the KDD 2010. New York: ACM Press, 2010. 213-222. [doi: 10.1145/1835804.1835834]
    [82] Zhang Y, Chen W, Wang D, Yang Q. User-Click modeling for understanding and predicting search-behavior. In: Proc. of the KDD 2011. New York: ACM Press, 2011. 1388-1396. [doi: 10.1145/2020408.2020613]
    [83] Shen S, Hu B, Chen W, Yang Q. Personalized click model through collaborative filtering. In: Proc. of the WSDM 2012. New York: ACM Press, 2012. 323-332. [doi: 10.1145/2124295.2124336]
    [84] Kleinberg S. Causal inference with rare events in large-scale time-series data. In: Proc. of the IJCAI 2013. Menlo Park: AAAI Press, 2013. 1444-1450.
    [85] Roemmele M, Bejan CA, Gordon AS. Choice of plausible alternatives: An evaluation of commonsense causal reasoning. In: Proc. of the AAAI Spring Symp.: L?gical Formalizations of Commonsense Reasoning. 2011.
    [86] Guyon I. Causality Challenge #3: Cause-effect pairs. 2013.
    [87] Maier M, Marazopoulou K, Arbour D, Jensen D. A sound and complete algorithm for learning causal models from relational data. In: Proc. of the UAI 2013. Oregon: AUAI Press, 2013.
    [88] Allman ES, Rhodes JA, Stanghellini E, Valtorta M. Identifiability of binary directed graphical models with hidden variables. In: Proc. of the UAI 2013. Oregon: AUAI Press, 2013.
    [89] Guo S, Wang M, Leskovec J. The role of social networks in online shopping: information passing, price of trust, and consumer choice. In: Proc. of the 12th ACM Conf. on Electronic Commerce. New York: ACM Press, 2011. 157-166. [doi: 10.1145/1993574. 1993598]
    [90] Anderson A, Huttenlocher D, Kleinberg J, Leskovec J. Effects of user similarity in social media. In: Proc. of the WSDM 2012. New York: ACM Press, 2012. 703-712. [doi: 10.1145/2124295.2124378]
    [91] Friedman N, Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 2003,50(1-2):95-125. [doi: 10.1023/A:1020249912095]
    [92] Jiang L, Zhang H, Cai Z. A novel Bayes model: hidden naive Bayes. IEEE Trans. on Knowledge and Data Engineering, 2009, 21(10):1361-1371. [doi: 10.1109/TKDE.2008.234]???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

赵森栋,刘挺.因果关系及其在社会媒体上的应用研究综述.软件学报,2014,25(12):2733-2752

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 01,2014
  • Revised:August 21,2014
  • Online: December 04,2014
You are the first2041645Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063