Shapelet Pruning and Shapelet Coverage for Time Series Classification
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Time series shapelets are subsequences of time series that can maximally represent a class. One of the most promising approaches to solve the problem of time series classification is to separate the process of finding shapelets from classification algorithm by adopting a shapelet transformation. The main advantages of that technique are that it optimizes the process of shapelets selection and different classification strategies could be applied. Important limitations also exist in that method. First, although the number of shapelets selected for the transformation directly affects the classification result, the quantity of shapelets which yields the best data for classification is hard to be decided. Second, previous algorithms often inevitably result in similar shapelets among the selected shapelets. This work addresses the latter problem by introducing an efficient and effective shapelet pruning technique to filter similar shapelets and decrease the number of candidate shapelets at the same time. On this basis, a shapelet coverage method is proposed for selecting the number of shapelets for a given dataset. Experiments using the classic benchmark datasets for time series classification demonstrate that the proposed transformation can improve classification accuracy.

    Reference
    Related
    Cited by
Get Citation

原继东,王志海,韩萌.基于Shapelet剪枝和覆盖的时间序列分类算法.软件学报,2015,26(9):2311-2325

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 07,2014
  • Revised:May 15,2014
  • Adopted:
  • Online: September 14,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063