Feature Selection with Enhanced Sparsity for Web Image Annotation
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    In dealing with the explosive growth of web images, Web image annotation has become a critical research issue in recent years. Sparse feature selection plays an important role in improving the efficiency and performance of Web image annotation. In this paper, a feature selection framework is proposed with enhanced sparsity for Web image annotation. The new framework, termed as semi-supervised sparse feature selection based on l2,1/2-matix norm with shared subspace learning (SFSLS), selects the most sparse and discriminative features by utilizing l2,1/2-matix norm and obtains the correlation between different features via shared subspace learning. In addition, SFSLS uses graph Laplacian semi-supervised learning to exploit both labeled and unlabeled data simultaneously. An efficient iterative algorithm is designed to optimize the objective function. SFSLS method is compared to other feature selection algorithms on two Web image datasets and the results indicate it is suitable for large-scale Web image annotation.

    Reference
    [1] Wu F, Yuan Y, Zhuang YT. Heterogeneous feature selection by group lasso with logistic regression. In: Proc. of the Int'l Conf. on Multimedia. 2010. 983-986. [doi: 10.1145/1873951.1874129].
    [2] Yang Y, Huang Z, Yang Y, Liu JJ, Shen HT, Luo J. Local image tagging via graph regularized joint group sparsity. Pattern Recognition, 2013,46(5):1358-1368. [doi: 10.1016/j.patcog.2012.10.026]
    [3] Yuan Y, Shao J, Wu F, Zhuang YT. Image annotation by the multiple kernel learning with group sparsity effect. Ruan Jian Xue Bao/Journal of Software, 2012,23(9):2500-2509 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4154.htm [doi: 10.3724/SP.J.1001.2012.04154]
    [4] Ma ZG, Nie FP, Yang Y, Uijlings J, Sebe N, Hauptmann A. Discriminating joint feature analysis for multimedia data understanding. IEEE Trans. on Multimedia, 2012,14(6):1662-1672. [doi: 10.1109/TMM.2012.2199293]
    [5] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 1996,58:267-288.
    [6] Cai D, Zhang C, He X. Unsupervised feature selection for multi-cluster data. In: Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2010. 333-342. [doi: 10.1145/1835804.1835848]
    [7] Xu ZB, Chang XY, Xu FM, Zhang H. L1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. on Neural Networks and Learning Systems, 2012,23(7):1013-1027. [doi: 10.1109/TNNLS.2012.2197412]
    [8] Xu ZB, Zhang H, Wang Y, Chang XY, Liang Y. L1/2 regularizer. Science China, 2010,53(6):1159-1169. [doi: 10.1007/s11432- 010-0090-0]
    [9] Zhao Q, Meng DY, Xu ZB. L1/2 regularized logistic regression. Pattern Recognition and Artificial Intelligence, 2012,25(5): 721-728 (in Chinese with English abstract).
    [10] Nie F, Huang H, Cai X, Ding C. Efficient and robust feature selection via joint L2,1-norms minimization. In: Proc. of the Neural Information Processing Systems. 2010. 1813-1821. http://papers.nips.cc/book/advances-in-neural-information-processing- systems-23-2010
    [11] Ando RK, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 2005,6:1817-1853.
    [12] Yang Y, Wu F, Nie FP, Shen HT, Zhuang YT, Hauptmann AG. Web and personal image annotation by mining label correlation with relaxed visual graph embedding. IEEE Trans. on Image Processing. 2012,21(3):1339-1351. [doi: 10.1109/TIP.2011. 2169269]
    [13] Ma ZG, Nie FP, Yang Y, Uijlings JRR, Sebe N. Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans. on Multimedia, 2012,14(4):1021-1030. [doi: 10.1109/TMM.2012.2187179]
    [14] Tang JH, Hong RC, Yan SC, Chua TS, Qi GJ, Jain R. Image annotation by kNN-sparse graph-based label propagation over noisily-tagged Web images. ACM Trans. on Intelligent Systems and Technology, 2010,1(1):111-126. [doi: 10.1145/1899412. 1899418]
    [15] Lee WY, Hsieh LC, Wu GL, Hsu W. Graph-Based semi-supervised learning with multi-modality propagation for large-scale image datasets. Journal of Visual Communication and Image Representation, 2013,24(3):295-302. [doi: org/10.1016/j.jvcir.2012. 12.002]
    [16] Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y. Nus-Wide: A real-world Web image database from national university of Singapore. In: Proc. of the Int'l Conf. on Image and Video Retrieval. Santorini: ACM Press, 2009. 1-9. [doi: 10.1145/1646396. 1646452]
    [17] Li H, Wang M, Hua X. MSRA-MM 2.0: A large-scale Web multimedia dataset. In: Proc. of the 2009 IEEE Int'l Conf. on Data Mining Workshops. Miami: IEEE, 2009. 164-169. [doi: 10.1109/ICDMW.2009.46]
    [18] Wang LP, Chen SC. l2,p-Matrix norm and its application in feature selection. 2013. http://arxiv.org/abs/1303.3987
    [19] Zhu X. Semi-Supervised learning literature survey. Technical Report, 1530, Madison: University of Wisconsin, 2007.
    [20] Zhu X, Ghahramani Z, Lafferty J. Semi-Supervised learning using gaussian fields and harmonic functions. In: Proc. of the 20th Int'l Conf. on Machine Learning. Washington, 2003. http://www.machinelearning.org/icml.html
    [21] Nie FP, Xu D, Hung T, Zhang CS. Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. IEEE Trans. on Image Processing, 2010,19(7):1921-1932. [doi: 10.1109/TIP.2010.2044958]
    [22] Yang Y, Zhuang YT, Wu F, Pan YH. Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. IEEE Trans. on Multimedia, 2008,10(3):437-446. [doi: 10.1109/TMM.2008.917359]
    [23] Zha ZJ, Mei T, Wang JD, Wang ZF, Hua XS. Graph-Based semi-supervised learning with multiple labels. Journal of Visual Communication and Image Representation, 2009,20(2):97-103. [doi: 10.1016/j.jvcir.2008.11.009]
    [24] Wang M, Hua XS, Tang JH, Hong R. Beyond distance measurement: Constructing neighborhood similarity for video annotation. IEEE Trans. on Multimedia, 2009,11(3):465-476. [doi: 10.1109/TMM.2009.2012919]
    [25] Chen J, Tang L, Liu J, Ye J. A convex formulation for learning shared structures from multiple tasks. In: Proc. of the 26th Annual Int'l Conf. on Machine Learning. New York: ACM Press, 2009. 137-144. [doi: 10.1145/1553374.1553392]
    [26] Ji S, Tang L, Yu S, Ye J. A shared-subspace learning framework for multi-label classification. ACM Trans. on Knowledge Discovery from Data, 2010,4(2):1-29. [doi: 10.1145/1754428.1754431]
    [27] Golub GH, Loan CF. Matrix Computations. 3rd ed., Baltimore: The Johns Hopkins University Press, 1996.
    [28] Cawley G, Talbot N, Girolami M. Sparse multinomial logistic regression via bayesian L1 regularisation. In: Schölkopf B, Platt J, Hoffman T, eds. Proc. of the Neural Information Processing Systems. 2007. 209-216. http://papers.nips.cc/book/advances-in- neural-information-processing-systems-20-2007
    Related
    Comments
    Comments
    分享到微博
    Submit
Get Citation

史彩娟,阮秋琦.基于增强稀疏性特征选择的网络图像标注.软件学报,2015,26(7):1800-1811

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 11,2013
  • Revised:July 09,2014
  • Online: July 02,2015
You are the first2049962Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063