Face Feature Representation Based on Image Decomposition
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This paper presents a face feature representation method based on image decomposition (FRID). FRID first decomposes an image into a series of orientation sub-images by executing multiple orientations operator. Then, each orientation sub-image is decomposed into a real part image and an imaginary part image by applying Euler mapping operator. For each real and imaginary part image, FRID divides them into multiple non-overlapping local blocks. The real and imaginary part histograms are calculated by accumulating the number of different values of image blocks respectively. All the real and imaginary part histograms of an image are concatenated into a super-vector. Finally, the dimensionality of the super-vector is reduced by linear discriminant analysis to yield a low-dimensional, compact, and discriminative representation. Experimental results show that FRID achieves better results in comparison with state-of-the-art methods, and is the most stable method.

    Reference
    [1] Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: A literature survey. ACM Computing Surveys, 2003,34(4): 399~485. [doi: 10.1145/954339.954342]
    [2] Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1):71~86. [doi: 10.1162/jocn.1991. 3.1.71]
    [3] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces versus Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(7):711~720. [doi: 10.1109/34.598228]
    [4] Yan SC, Xu D, Zhang BY. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(1):40~51. [doi: 10.1109/TPAMI.2007.250598]
    [5] Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319~2323. [doi: 10.1126/science.290.5500.2319]
    [6] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323~2326. [doi: 10.1126/science.290.5500.2323]
    [7] He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using laplacianfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(3):328~340. [doi: 10.1109/TPAMI.2005.55]
    [8] He X, Cai D, Yan S, Zhang H. Neighborhood preserving embedding. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2005. 1208~1213. [doi: 10.1109/ICCV.2005.167]
    [9] Mika S, Ratsch G, Weston J, Scholkopf B, Smola A, Muller KR. Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):623~628. [doi: 10.1109/TPAMI.2003.1195996]
    [10] Yang J, Frangi AF, Yang JY, Zhang D, Jin Z. KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(2):230~244. [doi: 10.1109/TPAMI. 2005.33]
    [11] Lowe DG. Distinctive image features from scale invariant key points. Int’l Journal of Computer Vision, 2004,60(2):91~110. [doi: 10.1023/B:VISI.0000029664.99615.94]
    [12] Dalal N, Triggs B. Histograms of oriented gradients of human detection. In: Proc. of the CVPR. 2005. 886~893. [doi: 10.1109/ CVPR.2005.177]
    [13] Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006,28(12):2037~2041. [doi: 10.1109/TPAMI.2006.244]
    [14] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(7):971~987. [doi: 10.1109/TPAMI.2002.1017623]
    [15] Liu CJ, Wechsler H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans. on Image Processing, 2002,11(4):467~476. [doi: 10.1109/TIP.2002.999679]
    [16] Tan XY, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. on Image Processing, 2010,19(6):1635~1650. [doi: 10.1109/TIP.2010.2042645]
    [17] Zhang BC, Gao YS, Zhao SQ, Liu J. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. on Image Processing, 2010,19(2):533~544. [doi: 10.1109/TIP.2009.2035882]
    [18] Zhang WC, Shan SG, Gao W, Chen X, Zhang H. Local gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proc. of the 10th IEEE Int’l Conf. on Computer Vision. 2005. 786~791. [doi: 10.1109/ICCV.2005.147]
    [19] Zhang BH, Shan SG, Chen XL, Gao W. Histogram of gabor phase patterns (HGPP): A novel object representation approach for face recognition. IEEE Trans. on Image Processing, 2007,16(1):57~68. [doi: 10.1109/TIP.2006.884956]
    [20] Lei Z, Liao SC, Pietikainen M, Li SZ. Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans. on Image Processing, 2011,20(1):247~256. [doi: 10.1109/TIP.2010.2060207]
    [21] Xie SF, Shan SG, Chen XL, Chen J. Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans. on Image Processing, 2010,19(5):1349~1361. [doi: 10.1109/TIP.2010.2041397]
    [22] Ahonen T, Rahtu E, Ojansivu V, Heikkila J. Recognition of blurred faces using local phase quantization. In: Proc. of the Int’l Conf. on Pattern Recognition. 2008. 1~4. [doi: 10.1109/ICPR.2008.4761847]
    [23] Rahtu E, Heikkilä J, Ojansivu V, Ahonen T. Local phase quantization for blur-insensitive image analysis. Image and Vision Computing, 2012,30:501~512. [doi: 10.1016/j.imavis.2012.04.001]
    [24] Lei Z, Ahonen T, Pietikainen M, Li SZ. Local frequency descriptor for low-resolution face recognition. In: Proc. of the 2011 IEEE Int’l Conf. on Automatic Face & Gesture Recognition and Workshops (FG 2011). 2011. 161~166. [doi: 10.1109/FG.2011.5771391]
    [25] Chan CH, Tahir MA, Kittler J. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. on Pattern Analysis嘠??つ?????ど????嵮telligence, 2013,35(5):1164~1176. [doi: 10.1109/TPAMI. 2012.199]
    [26] Su Y, Shan SG, Chen XL. Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. on Image Processing, 2009,18(8):1885~1896. [doi: 10.1109/TIP.2009.2021737]
    [27] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210~227. [doi: 10.1109/TPAMI.2008.79]
    [28] Zhang L, Yang M, Feng XC. Sparse representation or collaborative representation which helps face recognition? In: Proc. of the 13th IEEE Int’l Conf. on Computer Vision (ICCV). Barcelona, 2011. 471~478. [doi: 10.1109/ICCV.2011.6126277]
    [29] Yang M, Zhang L, Zhang D, Wang S. Relaxed collaborative representation for pattern classification. In: Proc. of the 25th IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Providence, 2012. 2224~2231. [doi: 10.1109/CVPR.2012.6247931]
    [30] Qian JJ, Yang J, Xu Y. Local structure-based image decomposition for feature extraction with applications to face recognition. IEEE Trans. on Image Processing, 2013,22(9):3591~3603. [doi: 10.1109/TIP.2013.2264676]
    [31] Fitch AJ, Kadyrov A, Christmas WJ, Kittler J. Fast robust correlation. IEEE Trans. on Image Processing, 2005,14(8):1063~1073. [doi: 10.1109/TIP.2005.849767]
    [32] Martinez AM, Benavente R. The AR face database. CVC Technical Report, #24, 1998.
    [33] Lee KC, Ho J, Kriegman DJ. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27(5):684~698. [doi: 10.1109/TPAMI.2005.92]
    [34] Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(12):1615~1618. [doi: 10.1109/TPAMI.2003.1251154]
    [35] Cai D, He XF, Han JW. Spectral regression for efficient regularized subspace learning. In: Proc. of the IEEE 11th Int’l Conf. on Computer Vision. 2007. 1~8. [doi: 10.1109/ICC???????????????
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李照奎,丁立新,何进荣,胡庆辉.基于图像分解的人脸特征表示.软件学报,2014,25(9):2102-2118

Copy
Share
Article Metrics
  • Abstract:5218
  • PDF: 7843
  • HTML: 3039
  • Cited by: 0
History
  • Received:April 06,2014
  • Revised:May 14,2014
  • Online: September 09,2014
You are the first2036741Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063