Title Recognition of Maximal-Length Noun Phrase Based on Bilingual Co-Training
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This article focuses on the problem of weak cross-domain ability on bilingual maximal-length noun phrase recognition. A bilingual noun phrase recognition algorithm based on semi-supervised learning is proposed. The approach can make full use of both the English features and the Chinese features in a unified framework, and it regards the two language corpus as different view of one dataset. Instances with the highest confidence score are selected and merged, and then added to the labeled data set to train the classifier. Experimental results on test sets show the effectiveness of the proposed approach which outperforms 4.52% over the baseline in cross-domain, and 3.08% over the baseline in similar domain.

    Reference
    Related
    Cited by
Get Citation

李业刚,黄河燕,史树敏,鉴萍,苏超.基于双语协同训练的最大名词短语识别研究.软件学报,2015,26(7):1615-1625

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 23,2014
  • Revised:May 21,2014
  • Adopted:
  • Online: July 02,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063