Prediction Based Relay Selection Method in Opportunistic Vehicular Networks
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To accommodate the dynamic connectivity and networking condition in DTN, most existing routing schemes require inferring future contact opportunities to select message relays. However, such relay only has an incidental effect on helping opportunistic data delivery. In order to again a further understanding of the intrinsic uncertainty of relay efficiency, this paper engages in an empirical investigation on the relay selection schemes. Firstly, it introduces a more effective opportunistic relay selection strategy based on the estimation of residual message delay, which utilizes pairwise contact records and the elapsed time from last contact. Next, based on the underlying opportunistic vehicular network extracted from large-scale realistic vehicle traces collected from urban areas, it investigates the efficiency of relay selection with an empirical view. The questions this study focuses on are: What is the probability that a selected relay can make the end-to-end delay reduced? How much the latency can be saved by a properly selected relay? Such empirical study is signficant for the protocol design and application deployments in the future opportunities vehicular networks.

    Reference
    Related
    Cited by
Get Citation

贾建斌,陈颖文,徐明.基于预测的机会车载网络中继选择策略研究.软件学报,2015,26(7):1730-1741

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 11,2012
  • Revised:January 24,2014
  • Adopted:
  • Online: July 02,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063