Sparse Label Propagation: A Robust Domain Adaptation Learning Method
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Sparse representation has received an increasing amount of interest in pattern classification due to its robustness. In this paper, a domain adaptation learning (DAL) approach is explored based on a sparsity preserving model, which assumes that each data point can be sparsely reconstructed. The proposed robust DAL algorithm, called sparse label propagation domain adaptation learning (SLPDAL), propagates the labels from labeled points in the source domain to the unlabeled dataset in the target domain using those sparsely reconstructed objects with sufficient smoothness. SLPDAL consists of three steps. First, it finds an optimal kernel space in which all samples from both source and target domains can be embedded by minimizing the mean discrepancy between these two domains. Then, it computes the best kernel sparse reconstructed coefficients for each data point in the kernel space by using l1-norm minimization. Finally, it propagates the labels of source domain to the target domain by preserving the kernel sparse reconstructed coefficients. The paper also derives an easy way to extend SLPDAL to out-of-sample data and multiple kernel learning respectively. Promising experimental results have been obtained for several DAL problems such as face recognition, visual video detection and text classification tasks.

    Reference
    Related
    Cited by
Get Citation

陶剑文,Fu-Lai CHUNG,王士同,姚奇富.稀疏标签传播:一种鲁棒的领域适应学习方法.软件学报,2015,26(5):977-1000

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 21,2013
  • Revised:January 10,2014
  • Adopted:
  • Online: August 22,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063