Image Segmentation Based on Rough Set and Differential Immune Fuzzy Clustering Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, a new method based on rough-fuzzy set and differential immune clone clustering algorithm (DICCA) for image segmentation is proposed. By replacing hard clustering with fuzzy clustering through incorporating rough-fuzzy set into DICCA, this algorithm can obtain more abundant clustering information. Specially, as the advantage of rough set is processing uncertain data, the proposed algorithm is more conducive to solve the uncertainty problem. In experiments, nine images are used for segmentation and four algorithms are chosen for comparison to validate the performance in the clustering stability. The experimental results show that the algorithm has higher segmentation accuracy and better segmentation results.

    Reference
    Related
    Cited by
Get Citation

马文萍,黄媛媛,李豪,李晓婷,焦李成.基于粗糙集与差分免疫模糊聚类算法的图像分割.软件学报,2014,25(11):2675-2689

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 15,2013
  • Revised:November 11,2013
  • Adopted:
  • Online: November 05,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063