Automatic Fault Localization Approach Combining Test Case Reduction and Joint Dependency Probabilistic Model
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The current test case reduction methods can not improve the effectiveness of fault localization, and the current fault localization approaches do not fully analyze the dependency of program elements. To solve these problems, this study proposes an automatic fault localization approach combining test case reduction and joint dependency probabilistic model. Different from the usual test case reduction approach, the failed test cases are fully considered in the proposed test cases reduction method based on execution path in order to provide effective test cases for fast and accurate fault localization. This paper defines a novel statistical model—Joint dependency probabilistic model. In this model, the control dependency and data dependency between program elements, the execution states of each statement are analyzed. An automatic fault localization approach is presented based on joint dependency probabilistic model. It ranks the suspicious statements by calculating the joint dependency suspicion level of the statement. Experimental results show that this approach is more effective than current state-of-art fault-localization methods such as SBI, SOBER, Tarantula, and RankCP.

    Reference
    Related
    Cited by
Get Citation

苏小红,龚丹丹,王甜甜,马培军.结合用例约简与联合依赖概率建模的错误定位.软件学报,2014,25(7):1492-1504

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 28,2012
  • Revised:November 05,2013
  • Adopted:
  • Online: July 08,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063