Distance Metric Learning Based on Side Information Autogeneration for Time Series
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    An effective distance metric is essential for time series clustering. To improve the performance of time series clustering, various methods of metric learning can be applied to generate a proper distance metric from the data. However, the existing metric learning methods overlook the characteristics of time series. And for time series, it is difficult to obtain side information, such as pairwise constraints, for metric learning. In this paper, a method for distance metric learning based on side information autogeneration for time series (SIADML) is proposed. In this method, dynamic time warping (DTW) distance is used to measure the similarity between two time series and generate pairwise constraints automatically. The metric which is learned from the pairwise constraints can preserve the neighbor relationship of time series as much as possible. Experimental results on benchmark datasets demonstrate that the proposed method can effectively improve the performance for time series clustering.

    Reference
    Related
    Cited by
Get Citation

邹朋成,王建东,杨国庆,张霞,王丽娜.辅助信息自动生成的时间序列距离度量学习.软件学报,2013,24(11):2642-2655

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 06,2013
  • Revised:August 02,2013
  • Adopted:
  • Online: November 01,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063