Dynamic Community Detection Based on Information Flow Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As the Internet applications, such as social networks and micro-blogs, become popular, their scale of users has been increasing rapidly. Community detection in these large-scale networks could provide important insights into customer behavior for service recommendation and product marketing. The difference of these networks from traditional ones is that besides topology, they have frequent information interaction between nodes. Information flow makes these networks directed and dynamic. Traditional community detection approaches fall short in these networks because they do not consider these new characteristics. Inspired by the dynamics of infectious disease theory, this paper proposes a novel community detection approach based on information flow analysis. This approach effectively groups the nodes with frequent information interaction in the same community. Between communities, there would be little information flow. This paper experiments on real-world networks demonstrate that compared with previous community detection methods, the proposed approach is more effective at identifying the dynamics in the networks.

    Reference
    Related
    Cited by
Get Citation

索勃,李战怀,陈群,王忠.基于信息流动分析的动态社区发现方法.软件学报,2014,25(3):547-559

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 21,2012
  • Revised:July 30,2013
  • Adopted:
  • Online: March 03,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063