Hamiltonian Markov Chain Monte Carlo Method for Abrupt Motion Tracking
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Tracking of abrupt motion is a challenging task in computer vision due to the large motion uncertainty induced by camera switching, sudden dynamic change, and rapid motion. This paper proposes an ordered over-relaxation Hamiltonian Markov chain Monte Carlo (MCMC) based tracking scheme for abrupt motion tracking within Bayesian filtering framework. In this tracking scheme, the object states are augmented by introducing a momentum item and the Hamiltonian dynamics (HD) is integrated into the traditional MCMC based tracking method. At the proposal step, the ordered over-relaxation method is adopted to draw the momentum item in order to suppress the random walk behavior induced by Gibbs sampling. In addition, the paper provides an adaptive step-size scheme to simulate the Hamiltonian dynamics in order to reduce the simulation error. The proposed tracking algorithm can avoid being trapped in local maxima with no additional computational burden, which is suffered by conventional MCMC based tracking algorithms. Experimental results reveal that the presented approach is efficient and effective in dealing with various types of abrupt motions compared with several alternatives.

    Reference
    Related
    Cited by
Get Citation

王法胜,李绪成,肖智博,鲁明羽.基于Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪.软件学报,2014,25(7):1593-1605

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 22,2012
  • Revised:June 28,2013
  • Adopted:
  • Online: July 08,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063