Video Clip Identification Algorithm Based on Spatio-Temporal Ordinal Measures
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Many state-of-the-art video clip identification algorithms are based on ordinal measures. However, they still have two problems: The weak uniqueness of video signature makes the precision decreases quickly as recall increases high enough; Quadratic-time complexity makes the response time too long and sensitive to the length of query video. To address these two problems, this paper proposes a video clip identification algorithm based on spatiao-temproal ordinal measures. The key steps are: (1) Before the accurate identification starts, it employs a linear-time complexity real-time filtration method based on spatio-temporal binary pattern histogram (STBPH) and a fast filtration method based on binary temporal ordinal measure (BTOM) to filter out most candidate video clips in target video; (2) During the accurate identification process, it utilizes joint spatio-temporal ordinal measure (JSTOM) which is more unique and robust in improving the precision. Experimental results show that the approach improves the precision significantly and is very efficient and insensitive to the length of query video.

    Reference
    [1] Shang LF, Yang LJ, Wang F, Chan KP, Hua XS. Real-Time large scale near-duplicate web video retrieval. In: Proc. of the Int'l Conf. on ACM MM. 2010. 531-540. [doi: 10.1145/1873951.1874021]
    [2] Wu X, Ngo CW, Hauptmann AG. Practical elimination of near-duplicates from Web video search. In: Proc. of the Int'l Conf. on ACM MM. 2007. 218-227. [doi: 10.1145/1291233.1291280]
    [3] Peng YX, Ngo CW, Dong QJ, Guo ZM, Xiao JG. An approach for video retrieval by video clip. Ruan Jian Xue Bao/Journal of Software, 2003,14(8):1409-1417 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1409.htm
    [4] Zhuang YT, Liu XM, Wu Y, Pan YH. A new approach to retrieve video by example video clip. Chinese Journal of Computers, 2000,23(3):300-305 (in Chinese with English abstract).
    [5] Hua XS, Chen X, Zhang HJ. Robust video signature based on ordinal measure. In: Proc. of the Int'l Conf. on ICIP. 2004. 685-688.
    [doi: 10.1109/ICIP.2004.1418847]
    [6] Chen L, Stentiford FWM. Video sequence matching based on temporal ordinal measurement. Pattern Recognition Letters, 2008, 29(13):1824-1831. [doi: 10.1016/j.patrec.2008.05.015]
    [7] Schoeffmann K, Boeszoermenyi L. Video sequence identification in TV broadcasts. In: Proc. of the Int'l Conf. on MMM. 2011. 129-139. [doi: 10.1007/978-3-642-17832-0_13]
    [8] Shen HT, Shao J, Huang Z, Zhou XF. Effective and efficient query processing for video subsequence identification. IEEE Trans. on Knowledge and Data Engineering, 2009,21(3):321-334. [doi: 10.1109/TKDE.2008.168]
    [9] Yeh MC, Cheng KT. Video copy detection by fast sequence matching. In: Proc. of the Conf. on CIVR. 2009. 633-636. [doi: 10. 1145/1646396.1646449]
    [10] Law-To J, Chen L, Joly A, Laptev I, Buisson O, Gouet-Brunet V, Boujemaa N, Stentiford F. Video copy detection: A comparative study. In: Matsuoka S, Yonezawa A, eds. Proc. of the Conf. on CIVR. 2007. 371-378. [doi: 10.1145/1282280.1282336]
    [11] Hampapur A, Hyun K, Bolle R. Comparison of sequence matching techniques for video copy detection. In: Proc. of the Conf. on SPIE. 2001. 194-201.
    [12] Kim C, Vasudev B. Spatiotemporal sequence matching for efficient video copy detection. IEEE Trans. on Circuits and Systems for Video Technology, 2005,15(1):127-132. [doi: 10.1109/TCSVT.2004.836751]
    [13] Naphade MR, Yeung MM, Yeo BL. A novel scheme for fast and efficient video sequence matching using compact signatures. In: Proc. of the Conf. on SPIE. 2000. 564-572.
    [14] Dohring I, Lienhart R, Mining TV broadcasts for recurring video sequences. In: Proc. of the Conf. on CIVR. 2009. 1-8. [doi: 10.1145/1646396.1646432]
    [15] Liu N, Zhao Y, Zhu ZF. Commercial recognition in TV streams using coarse-to-fine matching strategy. In: Proc. of the Conf. on PCM. 2010. 296-307. [doi: 10.1007/978-3-642-15702-8_27]
    [16] Yuan JS, Duan LY, Ranganath S, Xu CS. Fast and robust short video clip search for copy detection. In: Proc. of the Conf. on PCM. 2004. 479-488. [doi: 10.1007/978-3-540-30542-2_59]
    [17] Lei YQ, Luo WQ, Wang YG, Huang JW. Video sequence matching based on the invariance of color correlation. IEEE Trans. on Circuits and Systems for Video Technology, 2012,22(7):1-12. [doi: 10.1109/TCSVT.2012.2204811]
    [18] Joly A, Buisson O, Frelicot C. Content-Based copy retrieval using distrotion-based probalilistic similarity search. IEEE Trans. on Multimedia, 2007,9(2):293-306. [doi: 10.1109/TMM.2006.886278]
    [19] Law TJ, Gouet B, Bussion O, Boujemaa N. Local behaviors labelling for content-based video copy detection. In: Proc. of the Int'l Conf. on ICPR. 2006. 232-235. [doi: 10.1109/ICPR.2006.767]
    [20] Tian YH, Huang TJ, Gao W. Multimodal video copy detection using multi-detectors fusion. IEEE COMSOC MMTC E-Letter, 2012, 5(7):3-6.
    [21] Hsiao JH, Chen CS, Chien LF, Chen MS. A new approach to image copy detection based on extended feature sets. IEEE Trans. on Image Process, 2007,16(8):2069-2079. [doi: 10.1109/TIP.2007.900099]
    [22] Bober M, Brasnett P. MPEG-7 visual signature tools. In: Proc. of the Conf. on ICME. 2009. 1540-1543. [doi: 10.1109/ICME.2009. 5202798]
    [23] http://trecvid.nist.gov
    [24] Paul O, George A, Jon F, Brian A, Martial M, Alan F, Wessel K, Georges Q. TRECVID2011—An overview of the goals, tasks, data, evaluation mechanisms, and metrics. In: Proc. of the TRECVID 2011. 2011.
    [25] Guo X, Chen YB, Liu W, Mao YH, Zhang H, Zhou K, Wang LG, Hua Y, Zhao ZC, Zhao YY, Cai A. BUPT-MCPRL at TRECVID 2010. In: Proc. of the TRECVID 2010. 2010.
    [26] Wu X, Li JT, Tang S, Guo JB. Video copy detection based on spatio-temporal trajectory behavior feature. Journal of Computer Research and Development, 2010,47(11):1871-1877 (in Chinese with English abstract).
    [27] Zhang ZJ, Zou, JH. Video copy detection based on spatio-temporal feature. Pattern Recognition and Artificial Intelligence, 2012, 25(2):230-236 (in Chinese with English abstract).
    [28] Law TJ, Gouet B, Bussion O, Boujemaa N. Muscle-VCD-2007: A live benchmark for video copy detection. http://www.rocq.inria. fr/imedia/civr-bench/
    [29] Ojala T, Pietikoinen M, Harwood D. A comparative study of texture measures with calssification based on feature distributions. Pattern Recognition, 1996,29(1):51-59. [doi: 10.1016/0031-3203(95)00067-4]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王方圆,张树武,李和平.基于时空灰度序特征的视频片段定位算法.软件学报,2013,24(12):2921-2936

Copy
Share
Article Metrics
  • Abstract:3493
  • PDF: 5240
  • HTML: 0
  • Cited by: 0
History
  • Received:August 06,2012
  • Revised:January 07,2013
  • Online: December 04,2013
You are the first2051277Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063