Coinduction-Based Solution for Minimization of Kripke Structures
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [12]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    State explosion problem is the main obstacle of model checking. This problem is addressed in the paper from a coalgebraic point of view. By coninduction principle, the paper proves that: (1) Given any class of Kripke Structures (denoted by K), there exists a unique smallest Kripke structure (denoted by K0) with respect to bisimilarity which describes all behaviors of the Kripke structures with no redundancy. (2) For any Kripke Structure MK (the state space of M may be infinite), there exists a unique concrete smallest Kripke structure KM. Base on this idea, an algorithm is established for minimization of Kripke Structures. A naive implementation of this algorithm is developed in Ocaml. One of its applications is that instead of M, KM can be used with a smaller state space to verify properties for M in the process of Model Checking.

    Reference
    [1] Jacobs B, Rutten J. A tutorial on (CO) algebras and (CO) induction. Theoretical Computer Science, 1997,182(1-2):222-259.
    [2] Sangiorgi D. Introduction to Bisimulation and Coinduction. New York: Cambridge University Press, 2012.
    [3] Aczel P, Mendler P. A final coalgebra theorem. In: Pitt D, Rydeheard D, Dybjer P, Pitts A, Poigné A, eds. Proc. of the Category Theory and Computer Science. LNCS 389, Heidelberg: Springer-Verlag, 1989. 357-365. [doi: 10.1007/BFb0018361]
    [4] Rutten J, Turi D. Initial algebra and final coalgebra semantics for concurrency. In: Bakker J, Roever W, Rozenberg G, eds. Proc. of the Decade of Concurrency, Reflections and Perspectives. LNCS 803, Heidelberg: Springer-Verlag, 1994. 530-582. [doi: 10.1007/3-540-58043-3_28]
    [5] Clarke EM, Grumberg O, Peled DA. Model Checking. Cambridge: MIT Press, 1999.
    [6] Dovier A, Piazza C, Policriti A. An efficient algorithm for computing bisimulation equivalence. Theoretical Computer Science, 2004,311(1-3):221-256. [doi: 10.1016/S0304-3975(03)00361-X]
    [7] Bonchi F, Montanari U. Minimization algorithm for symbolic bisimilarity. In: Castagna G, ed. Proc. of the ESOP 2009. LNCS 5502, Heidelberg: Springer-Verlag, 2009. 267-284. [doi: 10.1007/978-3-642-00590-9_20]
    [8] Burkart O, Caucal D, Moller F, Steffen B. Verification on Infinite Structures. Bergstra J, Ponse A, Smolka S, eds. Handbook of Process Algebra. New York: Elsevier Science, 2000. 545-623.
    [9] Katoen JP, Kemna T, Zapreev I, Jansen DN. Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg O, Huth M, eds. Proc. of the Tools and Algorithms for the Construction and Analysis of Systems. LNCS 4424, Heidelberg: Springer-Verlag, 2007. 87-101. [doi: 10.1007/978-3-540-71209-1_9]
    [10] Pierce B. Basic Category Theory for Computer Scientists. Cambridge: MIT Press, 1991.
    [11] Quemener YM, Jéron T. Model-Checking of infinite Kripke structures defined by simple graph grammars. Electronic Notes in Theoretical Computer Science, 1995,2:222-229. http://www.sciencedirect.com/science/journal/15710661/2 [doi: 10.1016/S1571- 0661(05)80200-2]
    [12] Bekker W, Goranko V. Symbolic model checking of tense logics on rational Kripke models. In: Archibald M, Brattka V, Goranko V, Löwe B, eds. Proc. of the ILC 2007. LNCS 5489, Heidelberg: Springer-Verlag, 2009. 2-20. [doi: 10.1007/978-3-642-03092- 5_2]
    Cited by
Get Citation

高建华,蒋颖.基于余归纳的最小Kripke结构的求解.软件学报,2014,25(1):16-26

Copy
Share
Article Metrics
  • Abstract:3740
  • PDF: 5508
  • HTML: 1562
  • Cited by: 0
History
  • Received:November 06,2012
  • Revised:January 25,2013
  • Online: December 27,2013
You are the first2038061Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063