Abstract:Performance of supervised machine learning can be badly affected by noises of labeled data, as indicated by existing well studied theories on learning with noisy data. However these theories only focus on two-class classification problems. This paper studies the relation between noise examples and their effects on structured learning. Firstly, the paper founds that noise of labeled data increases in structured learning problems, leading to a higher noise rate in training procedure than on labeled data. Existing theories do not consider noise increament in structured learning, thus underestimate the complexities of learning problems. This paper provides a new theory on learning from noise data with structured predictions. Based on the theory, the concept of "effective size of training data" is proposed to describe the qualities of noisy training data sets in practice. The paper also analyzes the situations when structured learning models will go back to lower order ones in applications. Experimental results are given to confirm the correctness of these theories as well as their practical values on cross-lingual projection and co-training.