Collaborative Filtering Model Fusing Singularity and Diffusion Process
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As a key solution to the problem of information overload, the recommender system can filter a large deal of information according to user’s preference and provide personalized recommendations for the user. However, traditional collaborative filtering models with excellent performance haven’t made full use of the contextual information in the process of recommendation, which to some extent confronts the system with the performance bottleneck. In order to improve the system performance further, this paper starts with the contextual information on ratings, and proposes a collaborative filtering model fusing singularity and diffusion process (CFSDP) by taking advantage of ratings’ singularities obtained from the classified statistics of ratings and referring to the similarity model of multi-channel diffusion which regards recommender system as a user-item bipartite network. To demonstrate the superiority of the proposed model, the study provides comparative experimental results based on the MovieLens, NetFlix and Jester data sets. Finally, the results show that the model not only has better extensibility, but also can observably improve the prediction and recommendation quality of system with a reasonable time cost.

    Reference
    Related
    Cited by
Get Citation

杨兴耀,于炯,吐尔根·依布拉音,廖彬,钱育蓉.融合奇异性和扩散过程的协同过滤模型.软件学报,2013,24(8):1868-1884

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 26,2012
  • Revised:August 20,2012
  • Adopted:
  • Online: July 26,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063