Differential Evolution Algorithm for Multimodal Optimization Based on Abstract Convex Underestimation
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, a modified differential evolution algorithm, which is based on abstract convex lower approximation, is proposed for multimodal optimization. First, the original bound constrained optimization problem is converted to an increasing convex along rays (ICAR) function over a unit simplex by using the projection transformation method. Second, based on abstract convex theory, the study builds a lower approximation to original optimization problem by using a finite subset of biased sampling points comes from the population replacement scheme in the basic DE algorithm. Some properties of underestimation model are analyzed theoretically, and an N-ary tree data structure have also been designed and implemented to solve them. Furthermore, considering the difference between the original and its underestimated function values, the paper proposes a niche identify indicator based on biased DE sampling procedure, and also design a regional phylogenetic tree replacement strategy to enhance the exploitation capacity in niche. Experimental results confirm that the proposed algorithm can distinguish between the different attraction basins, and safeguard the consequently discovered solutions effectively. For the given benchmark problems, the proposed algorithm can find all the global optimal solutions and some good local minimum solutions.

    Reference
    Related
    Cited by
Get Citation

张贵军,何洋军,郭海锋,冯远静,徐建明.基于广义凸下界估计的多模态差分进化算法.软件学报,2013,24(6):1177-1195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 21,2011
  • Revised:April 18,2012
  • Adopted:
  • Online: June 07,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063