Multilevel Core-Sets Based Aggregation Clustering Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Many classical clustering algorithms like Average-link, K-means, K-medoids, Clara, Clarans and so on are all based on a single cluster-center and are only apt to discover convex-structured clusters. Other methods, e.g., CURE and DBSCAN, use more than one point to represent a cluster and can find some well-separated clusters of arbitrary shape. However, they only consider the original scale of the input data; thus, they cannot depart over-lapped or noisy clusters. To this end, this paper is used to propose a multilevel core-set based agglomerative clustering algorithm (MulCA). The idea of MulCA is that the clustering structure is described by multi-level core set. Clustering process is achieved through procedure which the top of the core set automatically becomes the underlying data set. In addition, through the introduction of random sampling based ε-core set (RBC), MulCA algorithm is applied to large-scale data sets. A large number of numerical experiments fully verify the algorithm MulCA.

    Reference
    Related
    Cited by
Get Citation

马儒宁,王秀丽,丁军娣.多层核心集凝聚算法.软件学报,2013,24(3):490-506

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 07,2012
  • Revised:September 12,2012
  • Adopted:
  • Online: March 01,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063